Cargando…
Adapting myoelectric control in real-time using a virtual environment
BACKGROUND: Pattern recognition technology allows for more intuitive control of myoelectric prostheses. However, the need to collect electromyographic data to initially train the pattern recognition system, and to re-train it during prosthesis use, adds complexity that can make using such a system d...
Autores principales: | Woodward, Richard B., Hargrove, Levi J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6335715/ https://www.ncbi.nlm.nih.gov/pubmed/30651109 http://dx.doi.org/10.1186/s12984-019-0480-5 |
Ejemplares similares
-
A comparison of the real-time controllability of pattern recognition to conventional myoelectric control for discrete and simultaneous movements
por: Young, Aaron J, et al.
Publicado: (2014) -
Resolving the effect of wrist position on myoelectric pattern recognition control
por: Adewuyi, Adenike A., et al.
Publicado: (2017) -
Real-Time Adaptation of an Artificial Neural Network for Transfemoral Amputees Using a Powered Prosthesis
por: Woodward, Richard B., et al.
Publicado: (2022) -
Joint speed feedback improves myoelectric prosthesis adaptation after perturbed reaches in non amputees
por: Earley, Eric J., et al.
Publicado: (2021) -
Wrist speed feedback improves elbow compensation and reaching accuracy for myoelectric transradial prosthesis users in hybrid virtual reaching task
por: Earley, Eric J., et al.
Publicado: (2023)