Cargando…
A graph-convolutional neural network model for the prediction of chemical reactivity
We present a supervised learning approach to predict the products of organic reactions given their reactants, reagents, and solvent(s). The prediction task is factored into two stages comparable to manual expert approaches: considering possible sites of reactivity and evaluating their relative likel...
Autores principales: | Coley, Connor W., Jin, Wengong, Rogers, Luke, Jamison, Timothy F., Jaakkola, Tommi S., Green, William H., Barzilay, Regina, Jensen, Klavs F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6335848/ https://www.ncbi.nlm.nih.gov/pubmed/30746086 http://dx.doi.org/10.1039/c8sc04228d |
Ejemplares similares
-
Prediction of Organic Reaction Outcomes Using Machine
Learning
por: Coley, Connor W., et al.
Publicado: (2017) -
Analyzing Learned Molecular Representations for Property
Prediction
por: Yang, Kevin, et al.
Publicado: (2019) -
Correction to Analyzing
Learned Molecular Representations
for Property Prediction
por: Yang, Kevin, et al.
Publicado: (2019) -
Computer-Assisted Retrosynthesis Based on Molecular
Similarity
por: Coley, Connor W., et al.
Publicado: (2017) -
Towards efficient discovery of green synthetic pathways with Monte Carlo tree search and reinforcement learning
por: Wang, Xiaoxue, et al.
Publicado: (2020)