Cargando…

Impact of Small Intestine Bacterial Overgrowth on Response to a Nutritional Intervention in Bangladeshi Children from an Urban Community

Small intestine bacterial overgrowth (SIBO) is prevalent among children living in low-income settings, leading to impaired growth and development. The aim of this study was to assess linear and ponderal growth parameters between malnourished SIBO-positive and SIBO-negative children aged 12–18 months...

Descripción completa

Detalles Bibliográficos
Autores principales: Gaffar, S. M. Abdul, Sarker, Shafiqul Alam, Mahfuz, Mustafa, Donowitz, Jeffrey R., Ahmed, Tahmeed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society of Tropical Medicine and Hygiene 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6335917/
https://www.ncbi.nlm.nih.gov/pubmed/30479249
http://dx.doi.org/10.4269/ajtmh.18-0759
Descripción
Sumario:Small intestine bacterial overgrowth (SIBO) is prevalent among children living in low-income settings, leading to impaired growth and development. The aim of this study was to assess linear and ponderal growth parameters between malnourished SIBO-positive and SIBO-negative children aged 12–18 months who prospectively underwent a nutritional intervention. A glucose hydrogen breath test to detect SIBO was performed in 194 stunted (length-for-age Z score [LAZ] < −2 standard deviations) or at-risk of stunting (LAZ score between < −1 and −2 standard deviations) children. Participants received nutritional supplementation (egg and milk) in addition to their regular family meals 6 days per week for 90 days. Small intestine bacterial overgrowth was defined as a ≥ 12-ppm rise in breath hydrogen over the patient’s baseline during the 3-hour test. Small intestine bacterial overgrowth status before intervention was forced into a multivariable linear regression model to examine its effects on anthropometric changes in response to the intervention. Sociodemographic data at enrollment was analyzed through multivariable logistic regression in an attempt to predict SIBO positivity. Overall, 14.9% (29/194) children were diagnosed with SIBO before the nutritional intervention. No statistically significant difference was observed among SIBO-positive and SIBO-negative groups in terms of their response to the nutritional intervention (SIBO-positive coefficient [95% confidence interval (CI)], P-value for ∆length-for-age Z score −0.003 [−0.14, 0.13], 0.96; ∆weight-for-age Z score −0.05 [−0.20, 0.09], 0.46; and ∆weight-for-length Z score −0.10 [−0.31, 0.10], 0.33). This study demonstrated that a noteworthy proportion of malnourished children living in a disadvantaged urban community were SIBO positive; however, it failed to reveal an association between SIBO status and response to nutritional intervention.