Cargando…

Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer's disease brains

A recent investigation on the architecture and chemical composition of amyloid-β (Aβ) plaques in ex vivo histological sections of an Aβ-overexpressing transgenic mouse hippocampus has shed light on the infrared light signature of cell-activation related biomarkers of Alzheimer's disease. A corr...

Descripción completa

Detalles Bibliográficos
Autores principales: Palombo, Francesca, Masia, Francesco, Mattana, Sara, Tamagnini, Francesco, Borri, Paola, Langbein, Wolfgang, Fioretto, Daniele
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336087/
https://www.ncbi.nlm.nih.gov/pubmed/30460364
http://dx.doi.org/10.1039/c8an01291a
_version_ 1783388004348329984
author Palombo, Francesca
Masia, Francesco
Mattana, Sara
Tamagnini, Francesco
Borri, Paola
Langbein, Wolfgang
Fioretto, Daniele
author_facet Palombo, Francesca
Masia, Francesco
Mattana, Sara
Tamagnini, Francesco
Borri, Paola
Langbein, Wolfgang
Fioretto, Daniele
author_sort Palombo, Francesca
collection PubMed
description A recent investigation on the architecture and chemical composition of amyloid-β (Aβ) plaques in ex vivo histological sections of an Aβ-overexpressing transgenic mouse hippocampus has shed light on the infrared light signature of cell-activation related biomarkers of Alzheimer's disease. A correlation was highlighted between the biomechanical properties detected by Brillouin microscopy and the molecular make-up of Aβ plaques provided by FTIR spectroscopic imaging and Raman microscopy (with correlative immunofluorescence imaging) in this animal model of the disease. In the Brillouin spectra of heterogeneous materials such as biomedical samples, peaks are likely the result of multiple contributions, more or less overlaid on a spatial and spectral scale. The ability to disentangle these contributions is very important as it may give access to discrete components that would otherwise be buried within the Brillouin peak envelope. Here, we applied an unsupervised non-negative matrix factorization method to analyse the spontaneous Brillouin microscopy maps of Aβ plaques in transgenic mouse hippocampal sections. The method has already been proven successful in decomposing chemical images and is applied here for the first time to acoustic maps acquired with a Fabry–Perot Brillouin microscope. We extracted and visualised a decrease in tissue rigidity from the core through to the periphery of the plaque, with spatially distinct components that we assigned to specific entities. This work demonstrates that it is possible to reveal the structure and mechanical properties of Aβ plaques, with details visualized by the projection of the mechanical contrast into a few relevant channels.
format Online
Article
Text
id pubmed-6336087
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-63360872019-02-11 Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer's disease brains Palombo, Francesca Masia, Francesco Mattana, Sara Tamagnini, Francesco Borri, Paola Langbein, Wolfgang Fioretto, Daniele Analyst Chemistry A recent investigation on the architecture and chemical composition of amyloid-β (Aβ) plaques in ex vivo histological sections of an Aβ-overexpressing transgenic mouse hippocampus has shed light on the infrared light signature of cell-activation related biomarkers of Alzheimer's disease. A correlation was highlighted between the biomechanical properties detected by Brillouin microscopy and the molecular make-up of Aβ plaques provided by FTIR spectroscopic imaging and Raman microscopy (with correlative immunofluorescence imaging) in this animal model of the disease. In the Brillouin spectra of heterogeneous materials such as biomedical samples, peaks are likely the result of multiple contributions, more or less overlaid on a spatial and spectral scale. The ability to disentangle these contributions is very important as it may give access to discrete components that would otherwise be buried within the Brillouin peak envelope. Here, we applied an unsupervised non-negative matrix factorization method to analyse the spontaneous Brillouin microscopy maps of Aβ plaques in transgenic mouse hippocampal sections. The method has already been proven successful in decomposing chemical images and is applied here for the first time to acoustic maps acquired with a Fabry–Perot Brillouin microscope. We extracted and visualised a decrease in tissue rigidity from the core through to the periphery of the plaque, with spatially distinct components that we assigned to specific entities. This work demonstrates that it is possible to reveal the structure and mechanical properties of Aβ plaques, with details visualized by the projection of the mechanical contrast into a few relevant channels. Royal Society of Chemistry 2018-12-21 2018-11-21 /pmc/articles/PMC6336087/ /pubmed/30460364 http://dx.doi.org/10.1039/c8an01291a Text en This journal is © The Royal Society of Chemistry 2018 http://creativecommons.org/licenses/by/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0)
spellingShingle Chemistry
Palombo, Francesca
Masia, Francesco
Mattana, Sara
Tamagnini, Francesco
Borri, Paola
Langbein, Wolfgang
Fioretto, Daniele
Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer's disease brains
title Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer's disease brains
title_full Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer's disease brains
title_fullStr Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer's disease brains
title_full_unstemmed Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer's disease brains
title_short Hyperspectral analysis applied to micro-Brillouin maps of amyloid-beta plaques in Alzheimer's disease brains
title_sort hyperspectral analysis applied to micro-brillouin maps of amyloid-beta plaques in alzheimer's disease brains
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336087/
https://www.ncbi.nlm.nih.gov/pubmed/30460364
http://dx.doi.org/10.1039/c8an01291a
work_keys_str_mv AT palombofrancesca hyperspectralanalysisappliedtomicrobrillouinmapsofamyloidbetaplaquesinalzheimersdiseasebrains
AT masiafrancesco hyperspectralanalysisappliedtomicrobrillouinmapsofamyloidbetaplaquesinalzheimersdiseasebrains
AT mattanasara hyperspectralanalysisappliedtomicrobrillouinmapsofamyloidbetaplaquesinalzheimersdiseasebrains
AT tamagninifrancesco hyperspectralanalysisappliedtomicrobrillouinmapsofamyloidbetaplaquesinalzheimersdiseasebrains
AT borripaola hyperspectralanalysisappliedtomicrobrillouinmapsofamyloidbetaplaquesinalzheimersdiseasebrains
AT langbeinwolfgang hyperspectralanalysisappliedtomicrobrillouinmapsofamyloidbetaplaquesinalzheimersdiseasebrains
AT fiorettodaniele hyperspectralanalysisappliedtomicrobrillouinmapsofamyloidbetaplaquesinalzheimersdiseasebrains