Cargando…
Modeling the ACMG/AMP Variant Classification Guidelines as a Bayesian Classification Framework
PURPOSE: We evaluated the ACMG/AMP variant pathogenicity guidelines for internal consistency and compatibility with Bayesian statistical reasoning. METHODS: The ACMG/AMP criteria were translated into a naïve Bayesian classifier, assuming four levels of evidence and exponentially scaled odds of patho...
Autores principales: | Tavtigian, Sean V., Greenblatt, Marc S., Harrison, Steven M., Nussbaum, Robert L., Prabhu, Snehit A., Boucher, Kenneth M., Biesecker, Leslie G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336098/ https://www.ncbi.nlm.nih.gov/pubmed/29300386 http://dx.doi.org/10.1038/gim.2017.210 |
Ejemplares similares
-
Expanding ACMG variant classification guidelines into a general framework
por: Masson, Emmanuelle, et al.
Publicado: (2022) -
Reevaluating the Mutation Classification in Genetic Studies of Bradycardia Using ACMG/AMP Variant Classification Framework
por: Cheng, Liting, et al.
Publicado: (2020) -
Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework
por: Brnich, Sarah E., et al.
Publicado: (2019) -
A machine learning approach based on ACMG/AMP guidelines for genomic variant classification and prioritization
por: Nicora, Giovanna, et al.
Publicado: (2022) -
Sherloc: a comprehensive refinement of the ACMG–AMP variant classification criteria
por: Nykamp, Keith, et al.
Publicado: (2017)