Cargando…
Fluid restriction reduces pulmonary edema in a model of acute lung injury in mechanically ventilated rats
Experimental acute lung injury models are often used to increase our knowledge on the acute respiratory distress syndrome (ARDS), however, existing animal models often do not take into account the impact of specific fluid strategies on the development of lung injury. In contrast, the current literat...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336323/ https://www.ncbi.nlm.nih.gov/pubmed/30653512 http://dx.doi.org/10.1371/journal.pone.0210172 |
_version_ | 1783388039459897344 |
---|---|
author | Ingelse, Sarah A. Juschten, Jenny Maas, Martinus A. W. Matute-Bello, Gustavo Juffermans, Nicole P. van Woensel, Job B. M. Bem, Reinout A. |
author_facet | Ingelse, Sarah A. Juschten, Jenny Maas, Martinus A. W. Matute-Bello, Gustavo Juffermans, Nicole P. van Woensel, Job B. M. Bem, Reinout A. |
author_sort | Ingelse, Sarah A. |
collection | PubMed |
description | Experimental acute lung injury models are often used to increase our knowledge on the acute respiratory distress syndrome (ARDS), however, existing animal models often do not take into account the impact of specific fluid strategies on the development of lung injury. In contrast, the current literature strongly suggests that fluid management strategies have a significant impact on clinical outcome of patients with ARDS. Thus, it is important to characterize the role of fluid management strategies in experimental models of lung injury. In this study we investigated the effect of two different fluid strategies on commonly used outcome variables in a short-term model of acute lung injury, in relation to age. Infant (2–3 weeks) and adult (3–4 months) Wistar rats received intratracheal instillations of lipopolysaccharide and 24 hours later were mechanically ventilated for 6 hours. During mechanical ventilation, rats from both age groups were randomized to either a standard or conservative intravenous fluid strategy. We found that the hemodynamic response in infant and adult rats was similar in both fluid strategies. Lung wet-to-dry ratios were lower in adult, but not in infant rats receiving the conservative fluid strategy as compared to the standard fluid strategy. There were age-related differences in markers of alveolar capillary barrier disruption and alveolar fluid clearance, yet these were unaffected by fluid strategy. Finally, we found significantly higher IL-1β and TNF-α concentrations in the adult rats treated with the conservative as compared to the standard fluid regimen. In conclusion, the choice of fluid strategy in mechanically ventilated rats with experimental LPS-induced acute lung injury has a significant effect on pulmonary extravascular water, an important and well-recognized lung injury marker, and on the local pro-inflammatory cytokine profiles. We advocate the use of a more uniform, conservative, fluid strategy regimen in experimental models of acute lung injury. |
format | Online Article Text |
id | pubmed-6336323 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-63363232019-01-30 Fluid restriction reduces pulmonary edema in a model of acute lung injury in mechanically ventilated rats Ingelse, Sarah A. Juschten, Jenny Maas, Martinus A. W. Matute-Bello, Gustavo Juffermans, Nicole P. van Woensel, Job B. M. Bem, Reinout A. PLoS One Research Article Experimental acute lung injury models are often used to increase our knowledge on the acute respiratory distress syndrome (ARDS), however, existing animal models often do not take into account the impact of specific fluid strategies on the development of lung injury. In contrast, the current literature strongly suggests that fluid management strategies have a significant impact on clinical outcome of patients with ARDS. Thus, it is important to characterize the role of fluid management strategies in experimental models of lung injury. In this study we investigated the effect of two different fluid strategies on commonly used outcome variables in a short-term model of acute lung injury, in relation to age. Infant (2–3 weeks) and adult (3–4 months) Wistar rats received intratracheal instillations of lipopolysaccharide and 24 hours later were mechanically ventilated for 6 hours. During mechanical ventilation, rats from both age groups were randomized to either a standard or conservative intravenous fluid strategy. We found that the hemodynamic response in infant and adult rats was similar in both fluid strategies. Lung wet-to-dry ratios were lower in adult, but not in infant rats receiving the conservative fluid strategy as compared to the standard fluid strategy. There were age-related differences in markers of alveolar capillary barrier disruption and alveolar fluid clearance, yet these were unaffected by fluid strategy. Finally, we found significantly higher IL-1β and TNF-α concentrations in the adult rats treated with the conservative as compared to the standard fluid regimen. In conclusion, the choice of fluid strategy in mechanically ventilated rats with experimental LPS-induced acute lung injury has a significant effect on pulmonary extravascular water, an important and well-recognized lung injury marker, and on the local pro-inflammatory cytokine profiles. We advocate the use of a more uniform, conservative, fluid strategy regimen in experimental models of acute lung injury. Public Library of Science 2019-01-17 /pmc/articles/PMC6336323/ /pubmed/30653512 http://dx.doi.org/10.1371/journal.pone.0210172 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication. |
spellingShingle | Research Article Ingelse, Sarah A. Juschten, Jenny Maas, Martinus A. W. Matute-Bello, Gustavo Juffermans, Nicole P. van Woensel, Job B. M. Bem, Reinout A. Fluid restriction reduces pulmonary edema in a model of acute lung injury in mechanically ventilated rats |
title | Fluid restriction reduces pulmonary edema in a model of acute lung injury in mechanically ventilated rats |
title_full | Fluid restriction reduces pulmonary edema in a model of acute lung injury in mechanically ventilated rats |
title_fullStr | Fluid restriction reduces pulmonary edema in a model of acute lung injury in mechanically ventilated rats |
title_full_unstemmed | Fluid restriction reduces pulmonary edema in a model of acute lung injury in mechanically ventilated rats |
title_short | Fluid restriction reduces pulmonary edema in a model of acute lung injury in mechanically ventilated rats |
title_sort | fluid restriction reduces pulmonary edema in a model of acute lung injury in mechanically ventilated rats |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336323/ https://www.ncbi.nlm.nih.gov/pubmed/30653512 http://dx.doi.org/10.1371/journal.pone.0210172 |
work_keys_str_mv | AT ingelsesaraha fluidrestrictionreducespulmonaryedemainamodelofacutelunginjuryinmechanicallyventilatedrats AT juschtenjenny fluidrestrictionreducespulmonaryedemainamodelofacutelunginjuryinmechanicallyventilatedrats AT maasmartinusaw fluidrestrictionreducespulmonaryedemainamodelofacutelunginjuryinmechanicallyventilatedrats AT matutebellogustavo fluidrestrictionreducespulmonaryedemainamodelofacutelunginjuryinmechanicallyventilatedrats AT juffermansnicolep fluidrestrictionreducespulmonaryedemainamodelofacutelunginjuryinmechanicallyventilatedrats AT vanwoenseljobbm fluidrestrictionreducespulmonaryedemainamodelofacutelunginjuryinmechanicallyventilatedrats AT bemreinouta fluidrestrictionreducespulmonaryedemainamodelofacutelunginjuryinmechanicallyventilatedrats |