Cargando…
A Wireless Closed Loop System for Optogenetic Peripheral Neuromodulation
The fast-growing field of bioelectronic medicine aims to develop engineered systems that relieve clinical conditions through stimulation of the peripheral nervous system (PNS)(1–5). Technologies of this type rely largely on electrical stimulation to provide neuromodulation of organ function or pain....
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336505/ https://www.ncbi.nlm.nih.gov/pubmed/30602791 http://dx.doi.org/10.1038/s41586-018-0823-6 |
_version_ | 1783388063473336320 |
---|---|
author | Mickle, Aaron D. Won, Sang Min Noh, Kyung Nim Yoon, Jangyeol Meacham, Kathleen W. Xue, Yeguang McIlvried, Lisa A. Copits, Bryan A. Samineni, Vijay K. Crawford, Kaitlyn E. Kim, Do Hoon Srivastava, Paulome Kim, Bong Hoon Min, Seunghwan Shiuan, Young Yun, Yeojeong Payne, Maria A. Zhang, Jianpeng Jang, Hokyung Li, Yuhang Lai, H. Henry Huang, Yonggang Park, Sung-Il Gereau, Robert W. Rogers, John A. |
author_facet | Mickle, Aaron D. Won, Sang Min Noh, Kyung Nim Yoon, Jangyeol Meacham, Kathleen W. Xue, Yeguang McIlvried, Lisa A. Copits, Bryan A. Samineni, Vijay K. Crawford, Kaitlyn E. Kim, Do Hoon Srivastava, Paulome Kim, Bong Hoon Min, Seunghwan Shiuan, Young Yun, Yeojeong Payne, Maria A. Zhang, Jianpeng Jang, Hokyung Li, Yuhang Lai, H. Henry Huang, Yonggang Park, Sung-Il Gereau, Robert W. Rogers, John A. |
author_sort | Mickle, Aaron D. |
collection | PubMed |
description | The fast-growing field of bioelectronic medicine aims to develop engineered systems that relieve clinical conditions through stimulation of the peripheral nervous system (PNS)(1–5). Technologies of this type rely largely on electrical stimulation to provide neuromodulation of organ function or pain. One example is sacral nerve stimulation to treat overactive bladder, urinary incontinence and interstitial cystitis/bladder pain syndrome(4,6,7). Conventional, continuous stimulation protocols, however, cause discomfort and pain, particularly when treating symptoms that can be intermittent in nature (e.g. sudden urinary urgency)(8). Direct physical coupling of electrodes to the nerve can lead to injury and inflammation(9–11). Furthermore, typical therapeutic stimulators target large nerve bundles that innervate multiple structures, resulting in a lack of organ specificity. This paper introduces a miniaturized bio-optoelectronic implant that avoids these limitations, via the use of (1) an optical stimulation interface that exploits microscale inorganic light emitting diodes (μ-ILEDs) to activate opsins, (2) a soft, precision biophysical sensor system that allows continuous measurements of organ function, and (3) a control module and data analytics approach that allows coordinated, closed-loop operation of the system to eliminate pathological behaviors as they occur in real-time. In an example reported here, a soft strain gauge yields real-time information on bladder function. Data analytics algorithms identify pathological behavior, and automated, closed-loop optogenetic neuromodulation of bladder sensory afferents normalize bladder function in the context of acute cystitis. This all-optical scheme for neuromodulation offers chronic stability and the potential for cell-type-specific stimulation. |
format | Online Article Text |
id | pubmed-6336505 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-63365052019-07-02 A Wireless Closed Loop System for Optogenetic Peripheral Neuromodulation Mickle, Aaron D. Won, Sang Min Noh, Kyung Nim Yoon, Jangyeol Meacham, Kathleen W. Xue, Yeguang McIlvried, Lisa A. Copits, Bryan A. Samineni, Vijay K. Crawford, Kaitlyn E. Kim, Do Hoon Srivastava, Paulome Kim, Bong Hoon Min, Seunghwan Shiuan, Young Yun, Yeojeong Payne, Maria A. Zhang, Jianpeng Jang, Hokyung Li, Yuhang Lai, H. Henry Huang, Yonggang Park, Sung-Il Gereau, Robert W. Rogers, John A. Nature Article The fast-growing field of bioelectronic medicine aims to develop engineered systems that relieve clinical conditions through stimulation of the peripheral nervous system (PNS)(1–5). Technologies of this type rely largely on electrical stimulation to provide neuromodulation of organ function or pain. One example is sacral nerve stimulation to treat overactive bladder, urinary incontinence and interstitial cystitis/bladder pain syndrome(4,6,7). Conventional, continuous stimulation protocols, however, cause discomfort and pain, particularly when treating symptoms that can be intermittent in nature (e.g. sudden urinary urgency)(8). Direct physical coupling of electrodes to the nerve can lead to injury and inflammation(9–11). Furthermore, typical therapeutic stimulators target large nerve bundles that innervate multiple structures, resulting in a lack of organ specificity. This paper introduces a miniaturized bio-optoelectronic implant that avoids these limitations, via the use of (1) an optical stimulation interface that exploits microscale inorganic light emitting diodes (μ-ILEDs) to activate opsins, (2) a soft, precision biophysical sensor system that allows continuous measurements of organ function, and (3) a control module and data analytics approach that allows coordinated, closed-loop operation of the system to eliminate pathological behaviors as they occur in real-time. In an example reported here, a soft strain gauge yields real-time information on bladder function. Data analytics algorithms identify pathological behavior, and automated, closed-loop optogenetic neuromodulation of bladder sensory afferents normalize bladder function in the context of acute cystitis. This all-optical scheme for neuromodulation offers chronic stability and the potential for cell-type-specific stimulation. 2019-01-02 2019-01 /pmc/articles/PMC6336505/ /pubmed/30602791 http://dx.doi.org/10.1038/s41586-018-0823-6 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Mickle, Aaron D. Won, Sang Min Noh, Kyung Nim Yoon, Jangyeol Meacham, Kathleen W. Xue, Yeguang McIlvried, Lisa A. Copits, Bryan A. Samineni, Vijay K. Crawford, Kaitlyn E. Kim, Do Hoon Srivastava, Paulome Kim, Bong Hoon Min, Seunghwan Shiuan, Young Yun, Yeojeong Payne, Maria A. Zhang, Jianpeng Jang, Hokyung Li, Yuhang Lai, H. Henry Huang, Yonggang Park, Sung-Il Gereau, Robert W. Rogers, John A. A Wireless Closed Loop System for Optogenetic Peripheral Neuromodulation |
title | A Wireless Closed Loop System for Optogenetic Peripheral Neuromodulation |
title_full | A Wireless Closed Loop System for Optogenetic Peripheral Neuromodulation |
title_fullStr | A Wireless Closed Loop System for Optogenetic Peripheral Neuromodulation |
title_full_unstemmed | A Wireless Closed Loop System for Optogenetic Peripheral Neuromodulation |
title_short | A Wireless Closed Loop System for Optogenetic Peripheral Neuromodulation |
title_sort | wireless closed loop system for optogenetic peripheral neuromodulation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336505/ https://www.ncbi.nlm.nih.gov/pubmed/30602791 http://dx.doi.org/10.1038/s41586-018-0823-6 |
work_keys_str_mv | AT mickleaarond awirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT wonsangmin awirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT nohkyungnim awirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT yoonjangyeol awirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT meachamkathleenw awirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT xueyeguang awirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT mcilvriedlisaa awirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT copitsbryana awirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT saminenivijayk awirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT crawfordkaitlyne awirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT kimdohoon awirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT srivastavapaulome awirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT kimbonghoon awirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT minseunghwan awirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT shiuanyoung awirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT yunyeojeong awirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT paynemariaa awirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT zhangjianpeng awirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT janghokyung awirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT liyuhang awirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT laihhenry awirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT huangyonggang awirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT parksungil awirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT gereaurobertw awirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT rogersjohna awirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT mickleaarond wirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT wonsangmin wirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT nohkyungnim wirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT yoonjangyeol wirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT meachamkathleenw wirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT xueyeguang wirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT mcilvriedlisaa wirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT copitsbryana wirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT saminenivijayk wirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT crawfordkaitlyne wirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT kimdohoon wirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT srivastavapaulome wirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT kimbonghoon wirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT minseunghwan wirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT shiuanyoung wirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT yunyeojeong wirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT paynemariaa wirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT zhangjianpeng wirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT janghokyung wirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT liyuhang wirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT laihhenry wirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT huangyonggang wirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT parksungil wirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT gereaurobertw wirelessclosedloopsystemforoptogeneticperipheralneuromodulation AT rogersjohna wirelessclosedloopsystemforoptogeneticperipheralneuromodulation |