Cargando…

A Wireless Closed Loop System for Optogenetic Peripheral Neuromodulation

The fast-growing field of bioelectronic medicine aims to develop engineered systems that relieve clinical conditions through stimulation of the peripheral nervous system (PNS)(1–5). Technologies of this type rely largely on electrical stimulation to provide neuromodulation of organ function or pain....

Descripción completa

Detalles Bibliográficos
Autores principales: Mickle, Aaron D., Won, Sang Min, Noh, Kyung Nim, Yoon, Jangyeol, Meacham, Kathleen W., Xue, Yeguang, McIlvried, Lisa A., Copits, Bryan A., Samineni, Vijay K., Crawford, Kaitlyn E., Kim, Do Hoon, Srivastava, Paulome, Kim, Bong Hoon, Min, Seunghwan, Shiuan, Young, Yun, Yeojeong, Payne, Maria A., Zhang, Jianpeng, Jang, Hokyung, Li, Yuhang, Lai, H. Henry, Huang, Yonggang, Park, Sung-Il, Gereau, Robert W., Rogers, John A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336505/
https://www.ncbi.nlm.nih.gov/pubmed/30602791
http://dx.doi.org/10.1038/s41586-018-0823-6
_version_ 1783388063473336320
author Mickle, Aaron D.
Won, Sang Min
Noh, Kyung Nim
Yoon, Jangyeol
Meacham, Kathleen W.
Xue, Yeguang
McIlvried, Lisa A.
Copits, Bryan A.
Samineni, Vijay K.
Crawford, Kaitlyn E.
Kim, Do Hoon
Srivastava, Paulome
Kim, Bong Hoon
Min, Seunghwan
Shiuan, Young
Yun, Yeojeong
Payne, Maria A.
Zhang, Jianpeng
Jang, Hokyung
Li, Yuhang
Lai, H. Henry
Huang, Yonggang
Park, Sung-Il
Gereau, Robert W.
Rogers, John A.
author_facet Mickle, Aaron D.
Won, Sang Min
Noh, Kyung Nim
Yoon, Jangyeol
Meacham, Kathleen W.
Xue, Yeguang
McIlvried, Lisa A.
Copits, Bryan A.
Samineni, Vijay K.
Crawford, Kaitlyn E.
Kim, Do Hoon
Srivastava, Paulome
Kim, Bong Hoon
Min, Seunghwan
Shiuan, Young
Yun, Yeojeong
Payne, Maria A.
Zhang, Jianpeng
Jang, Hokyung
Li, Yuhang
Lai, H. Henry
Huang, Yonggang
Park, Sung-Il
Gereau, Robert W.
Rogers, John A.
author_sort Mickle, Aaron D.
collection PubMed
description The fast-growing field of bioelectronic medicine aims to develop engineered systems that relieve clinical conditions through stimulation of the peripheral nervous system (PNS)(1–5). Technologies of this type rely largely on electrical stimulation to provide neuromodulation of organ function or pain. One example is sacral nerve stimulation to treat overactive bladder, urinary incontinence and interstitial cystitis/bladder pain syndrome(4,6,7). Conventional, continuous stimulation protocols, however, cause discomfort and pain, particularly when treating symptoms that can be intermittent in nature (e.g. sudden urinary urgency)(8). Direct physical coupling of electrodes to the nerve can lead to injury and inflammation(9–11). Furthermore, typical therapeutic stimulators target large nerve bundles that innervate multiple structures, resulting in a lack of organ specificity. This paper introduces a miniaturized bio-optoelectronic implant that avoids these limitations, via the use of (1) an optical stimulation interface that exploits microscale inorganic light emitting diodes (μ-ILEDs) to activate opsins, (2) a soft, precision biophysical sensor system that allows continuous measurements of organ function, and (3) a control module and data analytics approach that allows coordinated, closed-loop operation of the system to eliminate pathological behaviors as they occur in real-time. In an example reported here, a soft strain gauge yields real-time information on bladder function. Data analytics algorithms identify pathological behavior, and automated, closed-loop optogenetic neuromodulation of bladder sensory afferents normalize bladder function in the context of acute cystitis. This all-optical scheme for neuromodulation offers chronic stability and the potential for cell-type-specific stimulation.
format Online
Article
Text
id pubmed-6336505
institution National Center for Biotechnology Information
language English
publishDate 2019
record_format MEDLINE/PubMed
spelling pubmed-63365052019-07-02 A Wireless Closed Loop System for Optogenetic Peripheral Neuromodulation Mickle, Aaron D. Won, Sang Min Noh, Kyung Nim Yoon, Jangyeol Meacham, Kathleen W. Xue, Yeguang McIlvried, Lisa A. Copits, Bryan A. Samineni, Vijay K. Crawford, Kaitlyn E. Kim, Do Hoon Srivastava, Paulome Kim, Bong Hoon Min, Seunghwan Shiuan, Young Yun, Yeojeong Payne, Maria A. Zhang, Jianpeng Jang, Hokyung Li, Yuhang Lai, H. Henry Huang, Yonggang Park, Sung-Il Gereau, Robert W. Rogers, John A. Nature Article The fast-growing field of bioelectronic medicine aims to develop engineered systems that relieve clinical conditions through stimulation of the peripheral nervous system (PNS)(1–5). Technologies of this type rely largely on electrical stimulation to provide neuromodulation of organ function or pain. One example is sacral nerve stimulation to treat overactive bladder, urinary incontinence and interstitial cystitis/bladder pain syndrome(4,6,7). Conventional, continuous stimulation protocols, however, cause discomfort and pain, particularly when treating symptoms that can be intermittent in nature (e.g. sudden urinary urgency)(8). Direct physical coupling of electrodes to the nerve can lead to injury and inflammation(9–11). Furthermore, typical therapeutic stimulators target large nerve bundles that innervate multiple structures, resulting in a lack of organ specificity. This paper introduces a miniaturized bio-optoelectronic implant that avoids these limitations, via the use of (1) an optical stimulation interface that exploits microscale inorganic light emitting diodes (μ-ILEDs) to activate opsins, (2) a soft, precision biophysical sensor system that allows continuous measurements of organ function, and (3) a control module and data analytics approach that allows coordinated, closed-loop operation of the system to eliminate pathological behaviors as they occur in real-time. In an example reported here, a soft strain gauge yields real-time information on bladder function. Data analytics algorithms identify pathological behavior, and automated, closed-loop optogenetic neuromodulation of bladder sensory afferents normalize bladder function in the context of acute cystitis. This all-optical scheme for neuromodulation offers chronic stability and the potential for cell-type-specific stimulation. 2019-01-02 2019-01 /pmc/articles/PMC6336505/ /pubmed/30602791 http://dx.doi.org/10.1038/s41586-018-0823-6 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Mickle, Aaron D.
Won, Sang Min
Noh, Kyung Nim
Yoon, Jangyeol
Meacham, Kathleen W.
Xue, Yeguang
McIlvried, Lisa A.
Copits, Bryan A.
Samineni, Vijay K.
Crawford, Kaitlyn E.
Kim, Do Hoon
Srivastava, Paulome
Kim, Bong Hoon
Min, Seunghwan
Shiuan, Young
Yun, Yeojeong
Payne, Maria A.
Zhang, Jianpeng
Jang, Hokyung
Li, Yuhang
Lai, H. Henry
Huang, Yonggang
Park, Sung-Il
Gereau, Robert W.
Rogers, John A.
A Wireless Closed Loop System for Optogenetic Peripheral Neuromodulation
title A Wireless Closed Loop System for Optogenetic Peripheral Neuromodulation
title_full A Wireless Closed Loop System for Optogenetic Peripheral Neuromodulation
title_fullStr A Wireless Closed Loop System for Optogenetic Peripheral Neuromodulation
title_full_unstemmed A Wireless Closed Loop System for Optogenetic Peripheral Neuromodulation
title_short A Wireless Closed Loop System for Optogenetic Peripheral Neuromodulation
title_sort wireless closed loop system for optogenetic peripheral neuromodulation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336505/
https://www.ncbi.nlm.nih.gov/pubmed/30602791
http://dx.doi.org/10.1038/s41586-018-0823-6
work_keys_str_mv AT mickleaarond awirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT wonsangmin awirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT nohkyungnim awirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT yoonjangyeol awirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT meachamkathleenw awirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT xueyeguang awirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT mcilvriedlisaa awirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT copitsbryana awirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT saminenivijayk awirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT crawfordkaitlyne awirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT kimdohoon awirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT srivastavapaulome awirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT kimbonghoon awirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT minseunghwan awirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT shiuanyoung awirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT yunyeojeong awirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT paynemariaa awirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT zhangjianpeng awirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT janghokyung awirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT liyuhang awirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT laihhenry awirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT huangyonggang awirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT parksungil awirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT gereaurobertw awirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT rogersjohna awirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT mickleaarond wirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT wonsangmin wirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT nohkyungnim wirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT yoonjangyeol wirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT meachamkathleenw wirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT xueyeguang wirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT mcilvriedlisaa wirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT copitsbryana wirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT saminenivijayk wirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT crawfordkaitlyne wirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT kimdohoon wirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT srivastavapaulome wirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT kimbonghoon wirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT minseunghwan wirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT shiuanyoung wirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT yunyeojeong wirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT paynemariaa wirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT zhangjianpeng wirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT janghokyung wirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT liyuhang wirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT laihhenry wirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT huangyonggang wirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT parksungil wirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT gereaurobertw wirelessclosedloopsystemforoptogeneticperipheralneuromodulation
AT rogersjohna wirelessclosedloopsystemforoptogeneticperipheralneuromodulation