Cargando…

Downregulation of pectin biosynthesis gene GAUT4 leads to reduced ferulate and lignin-carbohydrate cross-linking in switchgrass

Knockdown (KD) expression of GAlactUronosylTransferase 4 (GAUT4) in switchgrass improves sugar yield and ethanol production from the biomass. The reduced recalcitrance of GAUT4-KD transgenic biomass is associated with reduced cell wall pectic homogalacturonan and rhamnogalacturonan II content and cr...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Mi, Yoo, Chang Geun, Pu, Yunqiao, Biswal, Ajaya K., Tolbert, Allison K., Mohnen, Debra, Ragauskas, Arthur J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336719/
https://www.ncbi.nlm.nih.gov/pubmed/30675520
http://dx.doi.org/10.1038/s42003-018-0265-6
Descripción
Sumario:Knockdown (KD) expression of GAlactUronosylTransferase 4 (GAUT4) in switchgrass improves sugar yield and ethanol production from the biomass. The reduced recalcitrance of GAUT4-KD transgenic biomass is associated with reduced cell wall pectic homogalacturonan and rhamnogalacturonan II content and cross-linking, and the associated increases in accessibility of cellulose to enzymatic deconstruction. To further probe the molecular basis for the reduced recalcitrance of GAUT4-KD biomass, potential recalcitrance-related factors including the physicochemical properties of lignin and hemicellulose are investigated. We show that the transgenic switchgrass have a lower abundance of ferulate and lignin-carbohydrate complex cross-linkages, reduced amounts of residual arabinan and xylan in lignin-enriched fractions after enzymatic hydrolysis, and greater coalescence and migration of lignin after hydrothermal pretreatment in comparison to the wild-type switchgrass control. The results reveal the roles of both decreased lignin-polymer and pectin cross-links in the reduction of recalcitrance in PvGAUT4-KD switchgrass.