Cargando…

Cuniculiplasmataceae, their ecogenomic and metabolic patterns, and interactions with ‘ARMAN’

Recently, the order Thermoplasmatales was expanded through the cultivation and description of species Cuniculiplasma divulgatum and corresponding family Cuniculiplasmataceae. Initially isolated from acidic streamers, signatures of these archaea were ubiquitously found in various low-pH settings. Eig...

Descripción completa

Detalles Bibliográficos
Autores principales: Golyshina, Olga V., Bargiela, Rafael, Golyshin, Peter N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Japan 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336744/
https://www.ncbi.nlm.nih.gov/pubmed/30499003
http://dx.doi.org/10.1007/s00792-018-1071-2
Descripción
Sumario:Recently, the order Thermoplasmatales was expanded through the cultivation and description of species Cuniculiplasma divulgatum and corresponding family Cuniculiplasmataceae. Initially isolated from acidic streamers, signatures of these archaea were ubiquitously found in various low-pH settings. Eight genomes with various levels of completeness are currently available, all of which exhibit very high sequence identities and genomic conservation. Co-existence of Cuniculiplasmataceae with archaeal Richmond Mine acidophilic nanoorganisms (‘ARMAN’)-related archaea representing an intriguing group within the “microbial dark matter” suggests their common fundamental environmental strategy and metabolic networking. The specific case of “Candidatus Mancarchaeum acidiphilum” Mia14 phylogenetically affiliated with “Ca. Micrarchaeota” from the superphylum “Ca. Diapherotrites” along with the presence of other representatives of ‘DPANN’ with significantly reduced genomes points at a high probability of close interactions between the latter and various Thermoplasmatales abundant in situ. This review critically assesses our knowledge on specific functional role and potential of the members of Cuniculiplasmataceae abundant in acidophilic microbiomes through the analysis of distribution, physiological and genomic patterns, and their interactions with ‘ARMAN’-related archaea. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00792-018-1071-2) contains supplementary material, which is available to authorized users.