Cargando…

Negative longitudinal magnetoresistance in gallium arsenide quantum wells

Negative longitudinal magnetoresistances (NLMRs) have been recently observed in a variety of topological materials and often considered to be associated with Weyl fermions that have a defined chirality. Here we report NLMRs in non-Weyl GaAs quantum wells. In the absence of a magnetic field the quant...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Jing, Ma, Meng K., Sultanov, Maksim, Xiao, Zhi-Li, Wang, Yong-Lei, Jin, Dafei, Lyu, Yang-Yang, Zhang, Wei, Pfeiffer, Loren N., West, Ken W., Baldwin, Kirk W., Shayegan, Mansour, Kwok, Wai-Kwong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336836/
https://www.ncbi.nlm.nih.gov/pubmed/30655544
http://dx.doi.org/10.1038/s41467-018-08199-2
_version_ 1783388127781453824
author Xu, Jing
Ma, Meng K.
Sultanov, Maksim
Xiao, Zhi-Li
Wang, Yong-Lei
Jin, Dafei
Lyu, Yang-Yang
Zhang, Wei
Pfeiffer, Loren N.
West, Ken W.
Baldwin, Kirk W.
Shayegan, Mansour
Kwok, Wai-Kwong
author_facet Xu, Jing
Ma, Meng K.
Sultanov, Maksim
Xiao, Zhi-Li
Wang, Yong-Lei
Jin, Dafei
Lyu, Yang-Yang
Zhang, Wei
Pfeiffer, Loren N.
West, Ken W.
Baldwin, Kirk W.
Shayegan, Mansour
Kwok, Wai-Kwong
author_sort Xu, Jing
collection PubMed
description Negative longitudinal magnetoresistances (NLMRs) have been recently observed in a variety of topological materials and often considered to be associated with Weyl fermions that have a defined chirality. Here we report NLMRs in non-Weyl GaAs quantum wells. In the absence of a magnetic field the quantum wells show a transition from semiconducting-like to metallic behaviour with decreasing temperature. We observe pronounced NLMRs up to 9 Tesla at temperatures above the transition and weak NLMRs in low magnetic fields at temperatures close to the transition and below 5 K. The observed NLMRs show various types of magnetic field behaviour resembling those reported in topological materials. We attribute them to microscopic disorder and use a phenomenological three-resistor model to account for their various features. Our results showcase a contribution of microscopic disorder in the occurrence of unusual phenomena. They may stimulate further work on tuning electronic properties via disorder/defect nano-engineering.
format Online
Article
Text
id pubmed-6336836
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-63368362019-01-22 Negative longitudinal magnetoresistance in gallium arsenide quantum wells Xu, Jing Ma, Meng K. Sultanov, Maksim Xiao, Zhi-Li Wang, Yong-Lei Jin, Dafei Lyu, Yang-Yang Zhang, Wei Pfeiffer, Loren N. West, Ken W. Baldwin, Kirk W. Shayegan, Mansour Kwok, Wai-Kwong Nat Commun Article Negative longitudinal magnetoresistances (NLMRs) have been recently observed in a variety of topological materials and often considered to be associated with Weyl fermions that have a defined chirality. Here we report NLMRs in non-Weyl GaAs quantum wells. In the absence of a magnetic field the quantum wells show a transition from semiconducting-like to metallic behaviour with decreasing temperature. We observe pronounced NLMRs up to 9 Tesla at temperatures above the transition and weak NLMRs in low magnetic fields at temperatures close to the transition and below 5 K. The observed NLMRs show various types of magnetic field behaviour resembling those reported in topological materials. We attribute them to microscopic disorder and use a phenomenological three-resistor model to account for their various features. Our results showcase a contribution of microscopic disorder in the occurrence of unusual phenomena. They may stimulate further work on tuning electronic properties via disorder/defect nano-engineering. Nature Publishing Group UK 2019-01-17 /pmc/articles/PMC6336836/ /pubmed/30655544 http://dx.doi.org/10.1038/s41467-018-08199-2 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Xu, Jing
Ma, Meng K.
Sultanov, Maksim
Xiao, Zhi-Li
Wang, Yong-Lei
Jin, Dafei
Lyu, Yang-Yang
Zhang, Wei
Pfeiffer, Loren N.
West, Ken W.
Baldwin, Kirk W.
Shayegan, Mansour
Kwok, Wai-Kwong
Negative longitudinal magnetoresistance in gallium arsenide quantum wells
title Negative longitudinal magnetoresistance in gallium arsenide quantum wells
title_full Negative longitudinal magnetoresistance in gallium arsenide quantum wells
title_fullStr Negative longitudinal magnetoresistance in gallium arsenide quantum wells
title_full_unstemmed Negative longitudinal magnetoresistance in gallium arsenide quantum wells
title_short Negative longitudinal magnetoresistance in gallium arsenide quantum wells
title_sort negative longitudinal magnetoresistance in gallium arsenide quantum wells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6336836/
https://www.ncbi.nlm.nih.gov/pubmed/30655544
http://dx.doi.org/10.1038/s41467-018-08199-2
work_keys_str_mv AT xujing negativelongitudinalmagnetoresistanceingalliumarsenidequantumwells
AT mamengk negativelongitudinalmagnetoresistanceingalliumarsenidequantumwells
AT sultanovmaksim negativelongitudinalmagnetoresistanceingalliumarsenidequantumwells
AT xiaozhili negativelongitudinalmagnetoresistanceingalliumarsenidequantumwells
AT wangyonglei negativelongitudinalmagnetoresistanceingalliumarsenidequantumwells
AT jindafei negativelongitudinalmagnetoresistanceingalliumarsenidequantumwells
AT lyuyangyang negativelongitudinalmagnetoresistanceingalliumarsenidequantumwells
AT zhangwei negativelongitudinalmagnetoresistanceingalliumarsenidequantumwells
AT pfeifferlorenn negativelongitudinalmagnetoresistanceingalliumarsenidequantumwells
AT westkenw negativelongitudinalmagnetoresistanceingalliumarsenidequantumwells
AT baldwinkirkw negativelongitudinalmagnetoresistanceingalliumarsenidequantumwells
AT shayeganmansour negativelongitudinalmagnetoresistanceingalliumarsenidequantumwells
AT kwokwaikwong negativelongitudinalmagnetoresistanceingalliumarsenidequantumwells