Cargando…
Machine Learning Models for Multiparametric Glioma Grading With Quantitative Result Interpretations
Gliomas are the most common primary malignant brain tumors in adults. Accurate grading is crucial as therapeutic strategies are often disparate for different grades and may influence patient prognosis. This study aims to provide an automated glioma grading platform on the basis of machine learning m...
Autores principales: | Wang, Xiuying, Wang, Dingqian, Yao, Zhigang, Xin, Bowen, Wang, Bao, Lan, Chuanjin, Qin, Yejun, Xu, Shangchen, He, Dazhong, Liu, Yingchao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6337068/ https://www.ncbi.nlm.nih.gov/pubmed/30686996 http://dx.doi.org/10.3389/fnins.2018.01046 |
Ejemplares similares
-
Automated Machine-Learning Framework Integrating Histopathological and Radiological Information for Predicting IDH1 Mutation Status in Glioma
por: Wang, Dingqian, et al.
Publicado: (2021) -
Enhanced γ-Glutamyltranspeptidase Imaging That Unravels the Glioma Recurrence in Post-radio/Chemotherapy Mixtures for Precise Pathology via Enzyme-Triggered Fluorescent Probe
por: Shi, Ben, et al.
Publicado: (2019) -
Multiparametric Magnetic Resonance Imaging Information Fusion Using Graph Convolutional Network for Glioma Grading
por: Guo, Peiying, et al.
Publicado: (2022) -
Multiparametric MRI Features Predict the SYP Gene Expression in Low-Grade Glioma Patients: A Machine Learning-Based Radiomics Analysis
por: Xiao, Zheng, et al.
Publicado: (2021) -
A Radiomics Model for Predicting Early Recurrence in Grade II Gliomas Based on Preoperative Multiparametric Magnetic Resonance Imaging
por: Wang, Zhen-hua, et al.
Publicado: (2021)