Cargando…
Cholinergic Agonists and Antagonists Have an Effect on the Metabolism of the Beetle Tenebrio Molitor
Synthetic insecticides are still widely used in plant protection. The main target for their action is the nervous system, in which the cholinergic system plays a vital role. Currently available insecticides have low selectivity and act on the cholinergic systems of invertebrates and vertebrates. Ace...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6337165/ https://www.ncbi.nlm.nih.gov/pubmed/30577556 http://dx.doi.org/10.3390/molecules24010017 |
_version_ | 1783388181978152960 |
---|---|
author | Chowański, Szymon Pacholska-Bogalska, Joanna Rosiński, Grzegorz |
author_facet | Chowański, Szymon Pacholska-Bogalska, Joanna Rosiński, Grzegorz |
author_sort | Chowański, Szymon |
collection | PubMed |
description | Synthetic insecticides are still widely used in plant protection. The main target for their action is the nervous system, in which the cholinergic system plays a vital role. Currently available insecticides have low selectivity and act on the cholinergic systems of invertebrates and vertebrates. Acetylcholine, a cholinergic system neurotransmitter, acts on cells by two types of receptors: nicotinic and muscarinic. In mammals, the role of muscarinic acetylcholine receptors (mAChRs) is quite well-known but in insects, is still not enough. Based on data indicating that the muscarinic cholinergic system strongly affects mammalian metabolism, we investigated if it similarly occurs in insects. We investigated the influence of agonists (acetylcholine, carbachol, and pilocarpine) and antagonists (tropane alkaloids: atropine and scopolamine) of mAChRs on the level of selected metabolites in Tenebrio molitor beetle trophic tissues. We analyzed the glycogen content in the fat body and midgut, the total free sugar concentration in the hemolymph and the lipid amount in the fat body. Moreover, we analyzed the levels of insulin-like peptides in the hemolymph. The tested compounds significantly influenced the mentioned parameters. They increased the glycogen content in the fat body and midgut but decreased the concentration of free sugars in the hemolymph. The observed effects were tissue-specific, and were also time- and dose-dependent. We used nonligated and neck-ligated larvae (to eliminate the influence of head factors on tissue metabolism) to determine whether the observed changes are the result of direct or indirect impacts on tissues. The obtained data suggest that the cholinergic system affects the fat body and midgut indirectly and directly and a pleiotropic role for mAChRs exists in the regulation of energy metabolism in insects. Moreover, tested compounds significantly affected the level of insulin-like peptides in hemolymph. Our studies for the first time showed that mAChRs are involved in regulation of insect metabolism of trophic tissues, and act on them directly and indirectly. Improved knowledge about insect cholinergic system may help in searching more selective and environment-friendly solutions in pest management. |
format | Online Article Text |
id | pubmed-6337165 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-63371652019-01-25 Cholinergic Agonists and Antagonists Have an Effect on the Metabolism of the Beetle Tenebrio Molitor Chowański, Szymon Pacholska-Bogalska, Joanna Rosiński, Grzegorz Molecules Article Synthetic insecticides are still widely used in plant protection. The main target for their action is the nervous system, in which the cholinergic system plays a vital role. Currently available insecticides have low selectivity and act on the cholinergic systems of invertebrates and vertebrates. Acetylcholine, a cholinergic system neurotransmitter, acts on cells by two types of receptors: nicotinic and muscarinic. In mammals, the role of muscarinic acetylcholine receptors (mAChRs) is quite well-known but in insects, is still not enough. Based on data indicating that the muscarinic cholinergic system strongly affects mammalian metabolism, we investigated if it similarly occurs in insects. We investigated the influence of agonists (acetylcholine, carbachol, and pilocarpine) and antagonists (tropane alkaloids: atropine and scopolamine) of mAChRs on the level of selected metabolites in Tenebrio molitor beetle trophic tissues. We analyzed the glycogen content in the fat body and midgut, the total free sugar concentration in the hemolymph and the lipid amount in the fat body. Moreover, we analyzed the levels of insulin-like peptides in the hemolymph. The tested compounds significantly influenced the mentioned parameters. They increased the glycogen content in the fat body and midgut but decreased the concentration of free sugars in the hemolymph. The observed effects were tissue-specific, and were also time- and dose-dependent. We used nonligated and neck-ligated larvae (to eliminate the influence of head factors on tissue metabolism) to determine whether the observed changes are the result of direct or indirect impacts on tissues. The obtained data suggest that the cholinergic system affects the fat body and midgut indirectly and directly and a pleiotropic role for mAChRs exists in the regulation of energy metabolism in insects. Moreover, tested compounds significantly affected the level of insulin-like peptides in hemolymph. Our studies for the first time showed that mAChRs are involved in regulation of insect metabolism of trophic tissues, and act on them directly and indirectly. Improved knowledge about insect cholinergic system may help in searching more selective and environment-friendly solutions in pest management. MDPI 2018-12-20 /pmc/articles/PMC6337165/ /pubmed/30577556 http://dx.doi.org/10.3390/molecules24010017 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chowański, Szymon Pacholska-Bogalska, Joanna Rosiński, Grzegorz Cholinergic Agonists and Antagonists Have an Effect on the Metabolism of the Beetle Tenebrio Molitor |
title | Cholinergic Agonists and Antagonists Have an Effect on the Metabolism of the Beetle Tenebrio Molitor |
title_full | Cholinergic Agonists and Antagonists Have an Effect on the Metabolism of the Beetle Tenebrio Molitor |
title_fullStr | Cholinergic Agonists and Antagonists Have an Effect on the Metabolism of the Beetle Tenebrio Molitor |
title_full_unstemmed | Cholinergic Agonists and Antagonists Have an Effect on the Metabolism of the Beetle Tenebrio Molitor |
title_short | Cholinergic Agonists and Antagonists Have an Effect on the Metabolism of the Beetle Tenebrio Molitor |
title_sort | cholinergic agonists and antagonists have an effect on the metabolism of the beetle tenebrio molitor |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6337165/ https://www.ncbi.nlm.nih.gov/pubmed/30577556 http://dx.doi.org/10.3390/molecules24010017 |
work_keys_str_mv | AT chowanskiszymon cholinergicagonistsandantagonistshaveaneffectonthemetabolismofthebeetletenebriomolitor AT pacholskabogalskajoanna cholinergicagonistsandantagonistshaveaneffectonthemetabolismofthebeetletenebriomolitor AT rosinskigrzegorz cholinergicagonistsandantagonistshaveaneffectonthemetabolismofthebeetletenebriomolitor |