Cargando…
Optimization of Ultrasonic-Microwave Assisted Extraction and Hepatoprotective Activities of Polysaccharides from Trametes orientalis
Ultrasonic-microwave assisted extraction (UMAE) of Trametes orientalis polysaccharides was optimized by response surface methodology. Hepatoprotective effects of a purified T. orientalis polysaccharide (TOP-2) were evaluated by alcohol-induced liver injury model mice. The optimal UMAE parameters wer...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6337204/ https://www.ncbi.nlm.nih.gov/pubmed/30609723 http://dx.doi.org/10.3390/molecules24010147 |
Sumario: | Ultrasonic-microwave assisted extraction (UMAE) of Trametes orientalis polysaccharides was optimized by response surface methodology. Hepatoprotective effects of a purified T. orientalis polysaccharide (TOP-2) were evaluated by alcohol-induced liver injury model mice. The optimal UMAE parameters were indicated as below: ratio of water to raw material 28 mL/g, microwave power 114 W, extraction time 11 min. The polysaccharides yield was 7.52 ± 0.12%, which was well consistent with the predicted value of 7.54%. Pre-treatment with TOP-2 effectively increased the liver index and spleen index in alcohol-treated mice. The elevated serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels of mice after alcohol exposure were inhibited by TOP-2 administration. The liver tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) levels have decreased significantly as a result of alcohol exposure, while pre-treatment with TOP-2 could mitigate these consequences. Furthermore, pre-treatment with TOP-2 could efficiently boost the superoxidase dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities, and observably constrain the malondialdehyde (MDA) level. The findings suggest that TOP-2 might be useful for alleviating the alcohol-induced hepatotoxicity via its antioxidant and anti-inflammatory potential. |
---|