Cargando…
Control over the Percentage, Shape and Size of the Graphite Particles in Martensitic White Castings Alloyed with Cr, Nb and Mg
This paper presents the results obtained regarding the control by manufacturers of the percentage, shape, and size of the precipitated graphite in the working layer of duplex work-rolls used in hot strip mill finishing stands. This working layer is manufactured in a martensitic white cast iron alloy...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6337252/ https://www.ncbi.nlm.nih.gov/pubmed/30625979 http://dx.doi.org/10.3390/ma12010185 |
_version_ | 1783388210164924416 |
---|---|
author | Cofiño-Villar, Alberto Alvarez-Antolin, Florentino Asensio-Lozano, Juan Garcia-Garcia, Maria |
author_facet | Cofiño-Villar, Alberto Alvarez-Antolin, Florentino Asensio-Lozano, Juan Garcia-Garcia, Maria |
author_sort | Cofiño-Villar, Alberto |
collection | PubMed |
description | This paper presents the results obtained regarding the control by manufacturers of the percentage, shape, and size of the precipitated graphite in the working layer of duplex work-rolls used in hot strip mill finishing stands. This working layer is manufactured in a martensitic white cast iron alloyed with Cr and Nb to promote the precipitation of M(3)C and MC carbides, which provide a high wear resistance. The thermal cycling behavior of this layer also has a decisive influence on its service life. In this context, the percentage of graphite and its morphology play a very important role against said thermal cycling. With the aim of studying their effect on the sphericity of graphite, the analyzed industrial manufacturing factors worth highlighting include the liquidus temperature, the %Si, the use of an FeSi inoculant with traces of Lanthanum, inoculation with different amounts of FeB and SiCaMn, and the addition of Mg. At the periphery of the working layer, it was found that the use of the FeSi inoculant with traces of La promoted an increase in the density of counts of graphite, and that inoculation with FeB and the addition of 0.02% Mg diminished the nodularity of the graphite. Furthermore, throughout the entire thickness of the working layer, an increase in the amount of SiCaMn of up to 0.6 kg/T produced an increase in the size of the graphite particles and a marked improvement in their nodularity. |
format | Online Article Text |
id | pubmed-6337252 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-63372522019-01-22 Control over the Percentage, Shape and Size of the Graphite Particles in Martensitic White Castings Alloyed with Cr, Nb and Mg Cofiño-Villar, Alberto Alvarez-Antolin, Florentino Asensio-Lozano, Juan Garcia-Garcia, Maria Materials (Basel) Article This paper presents the results obtained regarding the control by manufacturers of the percentage, shape, and size of the precipitated graphite in the working layer of duplex work-rolls used in hot strip mill finishing stands. This working layer is manufactured in a martensitic white cast iron alloyed with Cr and Nb to promote the precipitation of M(3)C and MC carbides, which provide a high wear resistance. The thermal cycling behavior of this layer also has a decisive influence on its service life. In this context, the percentage of graphite and its morphology play a very important role against said thermal cycling. With the aim of studying their effect on the sphericity of graphite, the analyzed industrial manufacturing factors worth highlighting include the liquidus temperature, the %Si, the use of an FeSi inoculant with traces of Lanthanum, inoculation with different amounts of FeB and SiCaMn, and the addition of Mg. At the periphery of the working layer, it was found that the use of the FeSi inoculant with traces of La promoted an increase in the density of counts of graphite, and that inoculation with FeB and the addition of 0.02% Mg diminished the nodularity of the graphite. Furthermore, throughout the entire thickness of the working layer, an increase in the amount of SiCaMn of up to 0.6 kg/T produced an increase in the size of the graphite particles and a marked improvement in their nodularity. MDPI 2019-01-08 /pmc/articles/PMC6337252/ /pubmed/30625979 http://dx.doi.org/10.3390/ma12010185 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Cofiño-Villar, Alberto Alvarez-Antolin, Florentino Asensio-Lozano, Juan Garcia-Garcia, Maria Control over the Percentage, Shape and Size of the Graphite Particles in Martensitic White Castings Alloyed with Cr, Nb and Mg |
title | Control over the Percentage, Shape and Size of the Graphite Particles in Martensitic White Castings Alloyed with Cr, Nb and Mg |
title_full | Control over the Percentage, Shape and Size of the Graphite Particles in Martensitic White Castings Alloyed with Cr, Nb and Mg |
title_fullStr | Control over the Percentage, Shape and Size of the Graphite Particles in Martensitic White Castings Alloyed with Cr, Nb and Mg |
title_full_unstemmed | Control over the Percentage, Shape and Size of the Graphite Particles in Martensitic White Castings Alloyed with Cr, Nb and Mg |
title_short | Control over the Percentage, Shape and Size of the Graphite Particles in Martensitic White Castings Alloyed with Cr, Nb and Mg |
title_sort | control over the percentage, shape and size of the graphite particles in martensitic white castings alloyed with cr, nb and mg |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6337252/ https://www.ncbi.nlm.nih.gov/pubmed/30625979 http://dx.doi.org/10.3390/ma12010185 |
work_keys_str_mv | AT cofinovillaralberto controloverthepercentageshapeandsizeofthegraphiteparticlesinmartensiticwhitecastingsalloyedwithcrnbandmg AT alvarezantolinflorentino controloverthepercentageshapeandsizeofthegraphiteparticlesinmartensiticwhitecastingsalloyedwithcrnbandmg AT asensiolozanojuan controloverthepercentageshapeandsizeofthegraphiteparticlesinmartensiticwhitecastingsalloyedwithcrnbandmg AT garciagarciamaria controloverthepercentageshapeandsizeofthegraphiteparticlesinmartensiticwhitecastingsalloyedwithcrnbandmg |