Cargando…
Study of Flexural Response in Strain Hardening Cementitious Composites Based on Proposed Parametric Model
Strain hardening cementitious composites (SHCCs) are widely used in projects due to their excellent deformation resistance and large energy absorption capacity. However, determining tensile strain capacity is still a challenge for engineers. The current popular approach is to use inverse methods to...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6337458/ https://www.ncbi.nlm.nih.gov/pubmed/30602687 http://dx.doi.org/10.3390/ma12010113 |
_version_ | 1783388259347333120 |
---|---|
author | Qi, Zhanfeng Huang, Zhiyi Li, Hui Chen, Wenhua |
author_facet | Qi, Zhanfeng Huang, Zhiyi Li, Hui Chen, Wenhua |
author_sort | Qi, Zhanfeng |
collection | PubMed |
description | Strain hardening cementitious composites (SHCCs) are widely used in projects due to their excellent deformation resistance and large energy absorption capacity. However, determining tensile strain capacity is still a challenge for engineers. The current popular approach is to use inverse methods to predict the tensile behavior of SHCCs, such as the UM method (Qian and Li) and the JCI (Japan Concrete Institute) method. The key to these two approaches is to acquire the exact relationship between the bending and the uniaxial response. In this paper, a reasonable linear constitutive model of the SHCCs is modified. Initially, the moment-curvature diagrams are discussed by material parameters. The results reveal that the moment-curvature response is quite sensitive to the variations in the parameter of transition strain α, post-cracking tensile stiffness η, and strain softening stiffness μ, however, for the compressive parameters, the moment-curvature responses influence on flexural behavior is insignificant. Moreover, the load-deflection curve in the mid-span of SHCC, based on the consideration of shear effect, is simulated under a four-point bending test (FPBT). The results show a remarkable consistency with the experimental data when compared to the previous simulations. It is expected that this modified method can enhance an accurate program in order to obtain the tensile capacity. |
format | Online Article Text |
id | pubmed-6337458 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-63374582019-01-22 Study of Flexural Response in Strain Hardening Cementitious Composites Based on Proposed Parametric Model Qi, Zhanfeng Huang, Zhiyi Li, Hui Chen, Wenhua Materials (Basel) Article Strain hardening cementitious composites (SHCCs) are widely used in projects due to their excellent deformation resistance and large energy absorption capacity. However, determining tensile strain capacity is still a challenge for engineers. The current popular approach is to use inverse methods to predict the tensile behavior of SHCCs, such as the UM method (Qian and Li) and the JCI (Japan Concrete Institute) method. The key to these two approaches is to acquire the exact relationship between the bending and the uniaxial response. In this paper, a reasonable linear constitutive model of the SHCCs is modified. Initially, the moment-curvature diagrams are discussed by material parameters. The results reveal that the moment-curvature response is quite sensitive to the variations in the parameter of transition strain α, post-cracking tensile stiffness η, and strain softening stiffness μ, however, for the compressive parameters, the moment-curvature responses influence on flexural behavior is insignificant. Moreover, the load-deflection curve in the mid-span of SHCC, based on the consideration of shear effect, is simulated under a four-point bending test (FPBT). The results show a remarkable consistency with the experimental data when compared to the previous simulations. It is expected that this modified method can enhance an accurate program in order to obtain the tensile capacity. MDPI 2018-12-31 /pmc/articles/PMC6337458/ /pubmed/30602687 http://dx.doi.org/10.3390/ma12010113 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Qi, Zhanfeng Huang, Zhiyi Li, Hui Chen, Wenhua Study of Flexural Response in Strain Hardening Cementitious Composites Based on Proposed Parametric Model |
title | Study of Flexural Response in Strain Hardening Cementitious Composites Based on Proposed Parametric Model |
title_full | Study of Flexural Response in Strain Hardening Cementitious Composites Based on Proposed Parametric Model |
title_fullStr | Study of Flexural Response in Strain Hardening Cementitious Composites Based on Proposed Parametric Model |
title_full_unstemmed | Study of Flexural Response in Strain Hardening Cementitious Composites Based on Proposed Parametric Model |
title_short | Study of Flexural Response in Strain Hardening Cementitious Composites Based on Proposed Parametric Model |
title_sort | study of flexural response in strain hardening cementitious composites based on proposed parametric model |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6337458/ https://www.ncbi.nlm.nih.gov/pubmed/30602687 http://dx.doi.org/10.3390/ma12010113 |
work_keys_str_mv | AT qizhanfeng studyofflexuralresponseinstrainhardeningcementitiouscompositesbasedonproposedparametricmodel AT huangzhiyi studyofflexuralresponseinstrainhardeningcementitiouscompositesbasedonproposedparametricmodel AT lihui studyofflexuralresponseinstrainhardeningcementitiouscompositesbasedonproposedparametricmodel AT chenwenhua studyofflexuralresponseinstrainhardeningcementitiouscompositesbasedonproposedparametricmodel |