Cargando…

Effects of Mo addition on crack tip opening displacement (CTOD) in heat affected zones (HAZs) of high-strength low-alloy (HSLA) steels

Effects of Mo addition on microstructures and crack tip opening displacement (CTOD) in heat affected zones (HAZs) of three high-strength low-alloy (HSLA) steels were investigated in this study, and the correlation between them was explained by fracture mechanisms related with martensite-austenite co...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Seok Gyu, Kim, Bohee, Kim, Woo Gyeom, Um, Kyung-Keun, Lee, Sunghak
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6338775/
https://www.ncbi.nlm.nih.gov/pubmed/30659277
http://dx.doi.org/10.1038/s41598-018-36782-6
Descripción
Sumario:Effects of Mo addition on microstructures and crack tip opening displacement (CTOD) in heat affected zones (HAZs) of three high-strength low-alloy (HSLA) steels were investigated in this study, and the correlation between them was explained by fracture mechanisms related with martensite-austenite constituent (MA) characteristics. The coarse-grained HAZ (CGHAZ) consisted of acicular ferrite (AF), granular bainite (GB), and bainitic ferrite (BF), whereas the inter-critically heated HAZ (ICHAZ) consisted of quasi-polygonal ferrite (QPF), GB, and MA. Since Mo promoted the formation of GB, BF, and MA and prevented the formation of AF and QPF, the CTOD decreased in both HAZs with increasing Mo content. According to the interrupted three-point bending test results of the ICHAZ where many MAs were distributed in the QPF or GB matrix, many voids were observed mainly at MA/QPF interfaces, which implied that the void initiation at the interfaces was a major fracture mechanism. The atomic probe data of MAs indicated the segregation of C, Mn, Mo, and P at MA/QPF interfaces, which could result in the easy MA/matrix interfacial debonding to initiate voids. Thus, characteristics of MA/QPF interfaces might affect more importantly the CTOD than the MA volume fraction or size.