Cargando…

A Fluorescence Sensing Determination of 2,4,6-Trinitrophenol Based on Cationic Water-Soluble Pillar[6]arene Graphene Nanocomposite

We describe a selective and sensitive fluorescence platform for the detection of trinitrophenol (TNP) based on competitive host–guest recognition between pyridine-functionalized pillar[6]arene (PCP6) and a probe (acridine orange, AO) that used PCP6-functionalized reduced graphene (PCP6-rGO) as the r...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Xiaoping, Zhang, Tingying, Zeng, Wenjie, He, Shuhua, Liu, Xi, Tian, Hexiang, Shi, Jianwei, Cao, Tuanwu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6338956/
https://www.ncbi.nlm.nih.gov/pubmed/30597872
http://dx.doi.org/10.3390/s19010091
Descripción
Sumario:We describe a selective and sensitive fluorescence platform for the detection of trinitrophenol (TNP) based on competitive host–guest recognition between pyridine-functionalized pillar[6]arene (PCP6) and a probe (acridine orange, AO) that used PCP6-functionalized reduced graphene (PCP6-rGO) as the receptor. TNP is an electron-deficient and negative molecule, which is captured by PCP6 via electrostatic interactions and π–π interactions. Therefore, a selective and sensitive fluorescence probe for TNP detection is developed. It has a low detection limit of 0.0035 μM (S/N = 3) and a wider linear response of 0.01–5.0 and 5.0–125.0 for TNP. The sensing platform is also used to test TNP in two water and soil samples with satisfying results. This suggests that this approach has potential applications for the determination of TNP.