Cargando…
An Improved Method for the Position Detection of a Quadrant Detector for Free Space Optical Communication
In free space optical communication, a beacon light loses too much energy after a long-distance transmission and faces strong interference from background light. The beacon light illuminated on a quadrant detector (QD) is so weak that the output signal-to-noise ratio (SNR) of a QD is very low, which...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6338972/ https://www.ncbi.nlm.nih.gov/pubmed/30621306 http://dx.doi.org/10.3390/s19010175 |
_version_ | 1783388528940417024 |
---|---|
author | Li, Qing Xu, Shaoxiong Yu, Jiawei Yan, Lingjie Huang, Yongmei |
author_facet | Li, Qing Xu, Shaoxiong Yu, Jiawei Yan, Lingjie Huang, Yongmei |
author_sort | Li, Qing |
collection | PubMed |
description | In free space optical communication, a beacon light loses too much energy after a long-distance transmission and faces strong interference from background light. The beacon light illuminated on a quadrant detector (QD) is so weak that the output signal-to-noise ratio (SNR) of a QD is very low, which leads to a significant decrease in the accuracy of the direct position detection method. To solve this problem, an improved light spot position detecting method is proposed. Since the background light and the dark current noise are white noise, we could consider concentrating the energy of QD output signal at a certain frequency point to enhance the output SNR. Therefore, a cosine signal is used to modulate the intensity of a beacon light at the transmitting end. Then the QD output photocurrents are also cosine signals with the same frequency as the modulating signal. Putting the photocurrent signals into a cross-correlation operation with a reference signal, which is the same as the modulating signal, can enhance the QD output SNR at a certain frequency point. Unfortunately, the result of the classical cross-correlation is attenuated with increasing delay. It is hard to detect the amplitude of the classical cross-correlation result. So, we used cyclic cross-correlation to obtain a stable correlation result to detect its amplitude accurately. The experiment results show that even when the QD output SNR is less than −17 dB, the detection root-mean-square error of the proposed method is 0.0092 mm, which is a quarter of the direct position detection method. Moreover, this method only needs a small amount of data to accomplish the calculation and is especially suitable for real-time spot position detection. |
format | Online Article Text |
id | pubmed-6338972 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-63389722019-01-23 An Improved Method for the Position Detection of a Quadrant Detector for Free Space Optical Communication Li, Qing Xu, Shaoxiong Yu, Jiawei Yan, Lingjie Huang, Yongmei Sensors (Basel) Article In free space optical communication, a beacon light loses too much energy after a long-distance transmission and faces strong interference from background light. The beacon light illuminated on a quadrant detector (QD) is so weak that the output signal-to-noise ratio (SNR) of a QD is very low, which leads to a significant decrease in the accuracy of the direct position detection method. To solve this problem, an improved light spot position detecting method is proposed. Since the background light and the dark current noise are white noise, we could consider concentrating the energy of QD output signal at a certain frequency point to enhance the output SNR. Therefore, a cosine signal is used to modulate the intensity of a beacon light at the transmitting end. Then the QD output photocurrents are also cosine signals with the same frequency as the modulating signal. Putting the photocurrent signals into a cross-correlation operation with a reference signal, which is the same as the modulating signal, can enhance the QD output SNR at a certain frequency point. Unfortunately, the result of the classical cross-correlation is attenuated with increasing delay. It is hard to detect the amplitude of the classical cross-correlation result. So, we used cyclic cross-correlation to obtain a stable correlation result to detect its amplitude accurately. The experiment results show that even when the QD output SNR is less than −17 dB, the detection root-mean-square error of the proposed method is 0.0092 mm, which is a quarter of the direct position detection method. Moreover, this method only needs a small amount of data to accomplish the calculation and is especially suitable for real-time spot position detection. MDPI 2019-01-05 /pmc/articles/PMC6338972/ /pubmed/30621306 http://dx.doi.org/10.3390/s19010175 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Qing Xu, Shaoxiong Yu, Jiawei Yan, Lingjie Huang, Yongmei An Improved Method for the Position Detection of a Quadrant Detector for Free Space Optical Communication |
title | An Improved Method for the Position Detection of a Quadrant Detector for Free Space Optical Communication |
title_full | An Improved Method for the Position Detection of a Quadrant Detector for Free Space Optical Communication |
title_fullStr | An Improved Method for the Position Detection of a Quadrant Detector for Free Space Optical Communication |
title_full_unstemmed | An Improved Method for the Position Detection of a Quadrant Detector for Free Space Optical Communication |
title_short | An Improved Method for the Position Detection of a Quadrant Detector for Free Space Optical Communication |
title_sort | improved method for the position detection of a quadrant detector for free space optical communication |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6338972/ https://www.ncbi.nlm.nih.gov/pubmed/30621306 http://dx.doi.org/10.3390/s19010175 |
work_keys_str_mv | AT liqing animprovedmethodforthepositiondetectionofaquadrantdetectorforfreespaceopticalcommunication AT xushaoxiong animprovedmethodforthepositiondetectionofaquadrantdetectorforfreespaceopticalcommunication AT yujiawei animprovedmethodforthepositiondetectionofaquadrantdetectorforfreespaceopticalcommunication AT yanlingjie animprovedmethodforthepositiondetectionofaquadrantdetectorforfreespaceopticalcommunication AT huangyongmei animprovedmethodforthepositiondetectionofaquadrantdetectorforfreespaceopticalcommunication AT liqing improvedmethodforthepositiondetectionofaquadrantdetectorforfreespaceopticalcommunication AT xushaoxiong improvedmethodforthepositiondetectionofaquadrantdetectorforfreespaceopticalcommunication AT yujiawei improvedmethodforthepositiondetectionofaquadrantdetectorforfreespaceopticalcommunication AT yanlingjie improvedmethodforthepositiondetectionofaquadrantdetectorforfreespaceopticalcommunication AT huangyongmei improvedmethodforthepositiondetectionofaquadrantdetectorforfreespaceopticalcommunication |