Cargando…
Low-Dose Computed Tomography Image Super-Resolution Reconstruction via Random Forests
Aiming at reducing computed tomography (CT) scan radiation while ensuring CT image quality, a new low-dose CT super-resolution reconstruction method based on combining a random forest with coupled dictionary learning is proposed. The random forest classifier finds the optimal solution of the mapping...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339014/ https://www.ncbi.nlm.nih.gov/pubmed/30626109 http://dx.doi.org/10.3390/s19010207 |