Cargando…
Low-Dose Computed Tomography Image Super-Resolution Reconstruction via Random Forests
Aiming at reducing computed tomography (CT) scan radiation while ensuring CT image quality, a new low-dose CT super-resolution reconstruction method based on combining a random forest with coupled dictionary learning is proposed. The random forest classifier finds the optimal solution of the mapping...
Autores principales: | Gu, Peijian, Jiang, Changhui, Ji, Min, Zhang, Qiyang, Ge, Yongshuai, Liang, Dong, Liu, Xin, Yang, Yongfeng, Zheng, Hairong, Hu, Zhanli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339014/ https://www.ncbi.nlm.nih.gov/pubmed/30626109 http://dx.doi.org/10.3390/s19010207 |
Ejemplares similares
-
Super-resolution CT Image Reconstruction Based on Dictionary Learning and Sparse Representation
por: Jiang, Changhui, et al.
Publicado: (2018) -
Improved total variation minimization method for few-view computed tomography image reconstruction
por: Hu, Zhanli, et al.
Publicado: (2014) -
Image reconstruction for positron emission tomography based on patch‐based regularization and dictionary learning
por: Zhang, Wanhong, et al.
Publicado: (2019) -
Attention-based dual-branch deep network for sparse-view computed tomography image reconstruction
por: Gao, Xiang, et al.
Publicado: (2023) -
Reduction in Irradiation Dose in Aperture Coded Enhanced Computed Tomography Imager Using Super-Resolution Techniques
por: Danan, Yossef, et al.
Publicado: (2020)