Cargando…
PPSDT: A Novel Privacy-Preserving Single Decision Tree Algorithm for Clinical Decision-Support Systems Using IoT Devices
Medical service providers offer their patients high quality services in return for their trust and satisfaction. The Internet of Things (IoT) in healthcare provides different solutions to enhance the patient-physician experience. Clinical Decision-Support Systems are used to improve the quality of h...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339027/ https://www.ncbi.nlm.nih.gov/pubmed/30609816 http://dx.doi.org/10.3390/s19010142 |
_version_ | 1783388542822514688 |
---|---|
author | Alabdulkarim, Alia Al-Rodhaan, Mznah Ma, Tinghuai Tian, Yuan |
author_facet | Alabdulkarim, Alia Al-Rodhaan, Mznah Ma, Tinghuai Tian, Yuan |
author_sort | Alabdulkarim, Alia |
collection | PubMed |
description | Medical service providers offer their patients high quality services in return for their trust and satisfaction. The Internet of Things (IoT) in healthcare provides different solutions to enhance the patient-physician experience. Clinical Decision-Support Systems are used to improve the quality of health services by increasing the diagnosis pace and accuracy. Based on data mining techniques and historical medical records, a classification model is built to classify patients’ symptoms. In this paper, we propose a privacy-preserving clinical decision-support system based on our novel privacy-preserving single decision tree algorithm for diagnosing new symptoms without exposing patients’ data to different network attacks. A homomorphic encryption cipher is used to protect users’ data. In addition, the algorithm uses nonces to avoid one party from decrypting other parties’ data since they all will be using the same key pair. Our simulation results have shown that our novel algorithm have outperformed the Naïve Bayes algorithm by 46.46%; in addition to the effects of the key value and size on the run time. Furthermore, our model is validated by proves, which meet the privacy requirements of the hospitals’ datasets, frequency of attribute values, and diagnosed symptoms. |
format | Online Article Text |
id | pubmed-6339027 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-63390272019-01-23 PPSDT: A Novel Privacy-Preserving Single Decision Tree Algorithm for Clinical Decision-Support Systems Using IoT Devices Alabdulkarim, Alia Al-Rodhaan, Mznah Ma, Tinghuai Tian, Yuan Sensors (Basel) Article Medical service providers offer their patients high quality services in return for their trust and satisfaction. The Internet of Things (IoT) in healthcare provides different solutions to enhance the patient-physician experience. Clinical Decision-Support Systems are used to improve the quality of health services by increasing the diagnosis pace and accuracy. Based on data mining techniques and historical medical records, a classification model is built to classify patients’ symptoms. In this paper, we propose a privacy-preserving clinical decision-support system based on our novel privacy-preserving single decision tree algorithm for diagnosing new symptoms without exposing patients’ data to different network attacks. A homomorphic encryption cipher is used to protect users’ data. In addition, the algorithm uses nonces to avoid one party from decrypting other parties’ data since they all will be using the same key pair. Our simulation results have shown that our novel algorithm have outperformed the Naïve Bayes algorithm by 46.46%; in addition to the effects of the key value and size on the run time. Furthermore, our model is validated by proves, which meet the privacy requirements of the hospitals’ datasets, frequency of attribute values, and diagnosed symptoms. MDPI 2019-01-03 /pmc/articles/PMC6339027/ /pubmed/30609816 http://dx.doi.org/10.3390/s19010142 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Alabdulkarim, Alia Al-Rodhaan, Mznah Ma, Tinghuai Tian, Yuan PPSDT: A Novel Privacy-Preserving Single Decision Tree Algorithm for Clinical Decision-Support Systems Using IoT Devices |
title | PPSDT: A Novel Privacy-Preserving Single Decision Tree Algorithm for Clinical Decision-Support Systems Using IoT Devices |
title_full | PPSDT: A Novel Privacy-Preserving Single Decision Tree Algorithm for Clinical Decision-Support Systems Using IoT Devices |
title_fullStr | PPSDT: A Novel Privacy-Preserving Single Decision Tree Algorithm for Clinical Decision-Support Systems Using IoT Devices |
title_full_unstemmed | PPSDT: A Novel Privacy-Preserving Single Decision Tree Algorithm for Clinical Decision-Support Systems Using IoT Devices |
title_short | PPSDT: A Novel Privacy-Preserving Single Decision Tree Algorithm for Clinical Decision-Support Systems Using IoT Devices |
title_sort | ppsdt: a novel privacy-preserving single decision tree algorithm for clinical decision-support systems using iot devices |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339027/ https://www.ncbi.nlm.nih.gov/pubmed/30609816 http://dx.doi.org/10.3390/s19010142 |
work_keys_str_mv | AT alabdulkarimalia ppsdtanovelprivacypreservingsingledecisiontreealgorithmforclinicaldecisionsupportsystemsusingiotdevices AT alrodhaanmznah ppsdtanovelprivacypreservingsingledecisiontreealgorithmforclinicaldecisionsupportsystemsusingiotdevices AT matinghuai ppsdtanovelprivacypreservingsingledecisiontreealgorithmforclinicaldecisionsupportsystemsusingiotdevices AT tianyuan ppsdtanovelprivacypreservingsingledecisiontreealgorithmforclinicaldecisionsupportsystemsusingiotdevices |