Cargando…
Development of a LeNet-5 Gas Identification CNN Structure for Electronic Noses
A new LeNet-5 gas identification convolutional neural network structure for electronic noses is proposed and developed in this paper. Inspired by the tremendous achievements made by convolutional neural networks in the field of computer vision, the LeNet-5 was adopted and improved for a 12-sensor ar...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339057/ https://www.ncbi.nlm.nih.gov/pubmed/30626158 http://dx.doi.org/10.3390/s19010217 |
Sumario: | A new LeNet-5 gas identification convolutional neural network structure for electronic noses is proposed and developed in this paper. Inspired by the tremendous achievements made by convolutional neural networks in the field of computer vision, the LeNet-5 was adopted and improved for a 12-sensor array based electronic nose system. Response data of the electronic nose to different concentrations of CO, CH(4) and their mixtures were acquired by an automated gas distribution and test system. By adjusting the parameters of the CNN structure, the gas LeNet-5 was improved to recognize the three categories of CO, CH(4) and their mixtures omitting the concentration influences. The final gas identification accuracy rate reached 98.67% with the unused data as test set by the improved gas LeNet-5. Comparison with results of Multiple Layer Perceptron neural networks and Probabilistic Neural Network verifies the improvement of recognition rate while with the same level of time cost, which proved the effectiveness of the proposed approach. |
---|