Cargando…
Deep Belief Network for Spectral–Spatial Classification of Hyperspectral Remote Sensor Data
With the development of high-resolution optical sensors, the classification of ground objects combined with multivariate optical sensors is a hot topic at present. Deep learning methods, such as convolutional neural networks, are applied to feature extraction and classification. In this work, a nove...
Autores principales: | Li, Chenming, Wang, Yongchang, Zhang, Xiaoke, Gao, Hongmin, Yang, Yao, Wang, Jiawei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339065/ https://www.ncbi.nlm.nih.gov/pubmed/30626030 http://dx.doi.org/10.3390/s19010204 |
Ejemplares similares
-
Dimension Reduction for Hyperspectral Remote Sensor Data Based on Multi-Objective Particle Swarm Optimization Algorithm and Game Theory
por: Gao, Hongmin, et al.
Publicado: (2019) -
Hyperspectral Remote Sensing Image Classification Based on Maximum Overlap Pooling Convolutional Neural Network
por: Li, Chenming, et al.
Publicado: (2018) -
Spectral-spatial classification of hyperspectral remote sensing images
por: Benediktsson, Jon Atli, et al.
Publicado: (2015) -
A Hyperspectral Image Classification Method Based on Multi-Discriminator Generative Adversarial Networks
por: Gao, Hongmin, et al.
Publicado: (2019) -
Spatial Spectral Band Selection for Enhanced Hyperspectral Remote Sensing Classification Applications
por: Torres, Ruben Moya, et al.
Publicado: (2020)