Cargando…

LOADng-IoT: An Enhanced Routing Protocol for Internet of Things Applications over Low Power Networks

The Internet of Things (IoT) is an emerging paradigm that proposes the connection of objects to exchange information in order to reach a common objective. In IoT networks, it is expected that the nodes will exchange data between each other and with external Internet services. However, due to deploym...

Descripción completa

Detalles Bibliográficos
Autores principales: Sobral, José V. V., Rodrigues, Joel J. P. C., Rabêlo, Ricardo A. L., Saleem, Kashif, Furtado, Vasco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339092/
https://www.ncbi.nlm.nih.gov/pubmed/30609865
http://dx.doi.org/10.3390/s19010150
Descripción
Sumario:The Internet of Things (IoT) is an emerging paradigm that proposes the connection of objects to exchange information in order to reach a common objective. In IoT networks, it is expected that the nodes will exchange data between each other and with external Internet services. However, due to deployment costs, not all the network devices are able to communicate with the Internet directly. Thus, other network nodes should use Internet-connected nodes as a gateway to forward messages to Internet services. Considering the fact that main routing protocols for low-power networks are not able to reach suitable performance in the displayed IoT environment, this work presents an enhancement to the Lightweight On-demand Ad hoc Distance-vector Routing Protocol—Next Generation (LOADng) for IoT scenarios. The proposal, named LOADng-IoT, is based on three improvements that will allow the nodes to find Internet-connected nodes autonomously and dynamically, decreasing the control message overhead required for the route construction, and reducing the loss of data messages directed to the Internet. Based on the performed assessment study, which considered several number of nodes in dense, sparse, and mobility scenarios, the proposed approach is able to present significant results in metrics related to quality-of-service, reliability, and energy efficiency.