Cargando…
High-Fidelity Depth Upsampling Using the Self-Learning Framework †
This paper presents a depth upsampling method that produces a high-fidelity dense depth map using a high-resolution RGB image and LiDAR sensor data. Our proposed method explicitly handles depth outliers and computes a depth upsampling with confidence information. Our key idea is the self-learning fr...
Autores principales: | Shim, Inwook, Oh, Tae-Hyun, Kweon, In So |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339097/ https://www.ncbi.nlm.nih.gov/pubmed/30591626 http://dx.doi.org/10.3390/s19010081 |
Ejemplares similares
-
Depth Map Upsampling via Multi-Modal Generative Adversarial Network
por: Tan, Daniel Stanley, et al.
Publicado: (2019) -
An Extremely Effective Spatial Pyramid and Pixel Shuffle Upsampling Decoder for Multiscale Monocular Depth Estimation
por: Luo, Huilan, et al.
Publicado: (2022) -
Multiview video plus depth transmission via virtual-view-assisted complementary down/upsampling
por: Jin, Zhi, et al.
Publicado: (2016) -
FPGA-based systolic deconvolution architecture for upsampling
por: Joseph Raj, Alex Noel, et al.
Publicado: (2022) -
Second-Order Regression-Based MR Image Upsampling
por: Hu, Jing, et al.
Publicado: (2017)