Cargando…
Advanced Heterogeneous Feature Fusion Machine Learning Models and Algorithms for Improving Indoor Localization †
In the era of the Internet of Things and Artificial Intelligence, the Wi-Fi fingerprinting-based indoor positioning system (IPS) has been recognized as the most promising IPS for various applications. Fingerprinting-based algorithms critically rely on a fingerprint database built from machine learni...
Autores principales: | Zhang, Lingwen, Xiao, Ning, Yang, Wenkao, Li, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339118/ https://www.ncbi.nlm.nih.gov/pubmed/30609715 http://dx.doi.org/10.3390/s19010125 |
Ejemplares similares
-
Fingerprint Database Reconstruction Based on Robust PCA for Indoor Localization
por: Zhang, Lingwen, et al.
Publicado: (2019) -
A Single LiDAR-Based Feature Fusion Indoor Localization Algorithm
por: Wang, Yun-Ting, et al.
Publicado: (2018) -
An Improved WiFi Indoor Positioning Algorithm by Weighted Fusion
por: Ma, Rui, et al.
Publicado: (2015) -
A Fast and Precise Indoor Localization Algorithm Based on an Online Sequential Extreme Learning Machine (†)
por: Zou, Han, et al.
Publicado: (2015) -
A Fast Indoor/Outdoor Transition Detection Algorithm Based on Machine Learning
por: Zhu, Yida, et al.
Publicado: (2019)