Cargando…
Two-Parameter Elliptical Fitting Method for Short-Cavity Fiber Fabry–Perot Sensor Interrogation
To solve the cavity interrogation problem of short cavity fiber Fabry–Perot sensors in white light spectral interrogation with amplified spontaneous emissions (ASEs) as the white light sources, a data processing method, using an improved elliptical fitting equation with only two undetermined coeffic...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339119/ https://www.ncbi.nlm.nih.gov/pubmed/30583493 http://dx.doi.org/10.3390/s19010036 |
Sumario: | To solve the cavity interrogation problem of short cavity fiber Fabry–Perot sensors in white light spectral interrogation with amplified spontaneous emissions (ASEs) as the white light sources, a data processing method, using an improved elliptical fitting equation with only two undetermined coefficients, is proposed. Based on the method, the cavity length of a fiber Fabry–Perot sensor without a complete reflection spectrum period in the frequency domain can be interrogated with relatively high resolution. Extrinsic fiber Fabry–Perot air-gap sensors with cavity lengths less than 30 μm are used to experimentally verify the method, and are successfully interrogated with an accuracy better than 0.55%. |
---|