Cargando…

Face Recognition in SSPP Problem Using Face Relighting Based on Coupled Bilinear Model

There have been decades of research on face recognition, and the performance of many state-of-the-art face recognition algorithms under well-conditioned environments has become saturated. Accordingly, recent research efforts have focused on difficult but practical challenges. One such issue is the s...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Sang-Il, Lee, Yonggeol, Lee, Minsik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339127/
https://www.ncbi.nlm.nih.gov/pubmed/30583537
http://dx.doi.org/10.3390/s19010043
Descripción
Sumario:There have been decades of research on face recognition, and the performance of many state-of-the-art face recognition algorithms under well-conditioned environments has become saturated. Accordingly, recent research efforts have focused on difficult but practical challenges. One such issue is the single sample per person (SSPP) problem, i.e., the case where only one training image of each person. While this problem is challenging because it is difficult to establish the within-class variation, working toward its solution is very practical because often only a few images of a person are available. To address the SSPP problem, we propose an efficient coupled bilinear model that generates virtual images under various illuminations using a single input image. The proposed model is inspired by the knowledge that the illuminance of an image is not sensitive to the poor quality of a subspace-based model, and it has a strong correlation to the image itself. Accordingly, a coupled bilinear model was constructed that retrieves the illuminance information from an input image. This information is then combined with the input image to estimate the texture information, from which we can generate virtual illumination conditions. The proposed method can instantly generate numerous virtual images of good quality, and these images can then be utilized to train the feature space for resolving SSPP problems. Experimental results show that the proposed method outperforms the existing algorithms.