Cargando…
Adaptive Multiclass Mahalanobis Taguchi System for Bearing Fault Diagnosis under Variable Conditions
Bearings are vital components in industrial machines. Diagnosing the fault of rolling element bearings and ensuring normal operation is essential. However, the faults of rolling element bearings under variable conditions and the adaptive feature selection has rarely been discussed until now. Thus, i...
Autores principales: | Wang, Ning, Wang, Zhipeng, Jia, Limin, Qin, Yong, Chen, Xinan, Zuo, Yakun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339141/ https://www.ncbi.nlm.nih.gov/pubmed/30577670 http://dx.doi.org/10.3390/s19010026 |
Ejemplares similares
-
Intelligent Fault Diagnosis of Industrial Robot Based on Multiclass Mahalanobis-Taguchi System for Imbalanced Data
por: Sun, Yue, et al.
Publicado: (2022) -
The Mahalanobis-Taguchi system /
por: Taguchi, Genichi, 1924-
Publicado: (2001) -
A Semi-Supervised Approach to Bearing Fault Diagnosis under Variable Conditions towards Imbalanced Unlabeled Data
por: Chen, Xinan, et al.
Publicado: (2018) -
Modified Mahalanobis Taguchi System for Imbalance Data Classification
por: El-Banna, Mahmoud
Publicado: (2017) -
Optimized Mahalanobis–Taguchi System for High-Dimensional Small Sample Data Classification
por: Xiao, Xinping, et al.
Publicado: (2020)