Cargando…
A Time-Varying Filter for Doppler Compensation Applied to Underwater Acoustic OFDM
This paper describes a Doppler compensation algorithm to improve the reliability of orthogonal frequency division multiplexing (OFDM). To compensate for the time-varying Doppler effect in a mobile deployment scenario, first the time-scaling factor over a wideband channel is estimated using pilot ton...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339152/ https://www.ncbi.nlm.nih.gov/pubmed/30597988 http://dx.doi.org/10.3390/s19010105 |
Sumario: | This paper describes a Doppler compensation algorithm to improve the reliability of orthogonal frequency division multiplexing (OFDM). To compensate for the time-varying Doppler effect in a mobile deployment scenario, first the time-scaling factor over a wideband channel is estimated using pilot tones inserted in each OFDM symbol. Then, using a time-varying resampling technique, the Doppler effect is compensated during the reception of each OFDM symbol in the frame. To predict the performance of the system in relatively shallow waters, a software channel model is developed that is able to simulate a wide variety of dynamic shallow water deployment scenario. The performance of the algorithm was tested for two extreme frequency ranges during sea trials, the first at 2 kHz for a long-range application, and the second at 125 kHz for a short range telemetry link. For the 2-kHz system, a 16-bps mobile link in which the platform was moving at 1 m/s was demonstrated to have a bit error rate on the order of [Formula: see text] , while, for the 125-kHz telemetry application, a 2000-bps link was enabled with a bit error rate of 0.03 at a low SNR equal to 5.5 dB. |
---|