Cargando…
Coarse-to-Fine Adaptive People Detection for Video Sequences by Maximizing Mutual Information †
Applying people detectors to unseen data is challenging since patterns distributions, such as viewpoints, motion, poses, backgrounds, occlusions and people sizes, may significantly differ from the ones of the training dataset. In this paper, we propose a coarse-to-fine framework to adapt frame by fr...
Autores principales: | García-Martín, Álvaro, SanMiguel, Juan C., Martínez, José M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339205/ https://www.ncbi.nlm.nih.gov/pubmed/30577455 http://dx.doi.org/10.3390/s19010004 |
Ejemplares similares
-
Enhancing Multi-Camera People Detection by Online Automatic Parametrization Using Detection Transfer and Self-Correlation Maximization †
por: Martín-Nieto, Rafael, et al.
Publicado: (2018) -
Conditional Rényi Divergence Saddlepoint and the Maximization of α-Mutual Information
por: Cai, Changxiao, et al.
Publicado: (2019) -
“Fine synergies” describe motor adaptation in people with drop foot in a way that supplements traditional “coarse synergies”
por: Bartsch-Jimenez, Angelo, et al.
Publicado: (2023) -
Is Coarse-to-Fine Strategy Sensitive to Normal Aging?
por: Musel, Benoit, et al.
Publicado: (2012) -
Linguistic Information in Auditory Dynamic Events Contributes to the Detection of Fine, Not Coarse Event Boundaries
por: Papenmeier, Frank, et al.
Publicado: (2019)