Cargando…

Markov Chain Realization of Multiple Detection Joint Integrated Probabilistic Data Association

In multiple detection target tracking environments, PDA-based algorithms such as multiple detection joint integrated probabilistic data association (MD-JIPDA) utilize the measurement partition method to generate measurement cells. Thus, one-to-many track-to-measurements associations can be realized....

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Yuan, Song, Taek Lyul, Cheagal, Dae Hoon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339207/
https://www.ncbi.nlm.nih.gov/pubmed/30598039
http://dx.doi.org/10.3390/s19010112
Descripción
Sumario:In multiple detection target tracking environments, PDA-based algorithms such as multiple detection joint integrated probabilistic data association (MD-JIPDA) utilize the measurement partition method to generate measurement cells. Thus, one-to-many track-to-measurements associations can be realized. However, in this structure, the number of joint data association events grows exponentially with the number of measurement cells and the number of tracks. MD-JIPDA is plagued by large increases in computational complexity when targets are closely spaced or move cross each other, especially in multiple detection scenarios. Here, the multiple detection Markov chain joint integrated probabilistic data association (MD-MC-JIPDA) is proposed, in which a Markov chain is used to generate random data association sequences. These sequences are substitutes for the association events. The Markov chain process significantly reduces the computational cost since only a few association sequences are generated while keeping preferable tracking performance. Finally, MD-MC-JIPDA is experimentally validated to demonstrate its effectiveness compared with some of the existing multiple detection data association algorithms.