Cargando…
Fault Diagnosis of Motor Bearings Based on a One-Dimensional Fusion Neural Network
Deep learning has been an important topic in fault diagnosis of motor bearings, which can avoid the need for extensive domain expertise and cumbersome artificial feature extraction. However, existing neural networks have low fault recognition rates and low adaptability under variable load conditions...
Autores principales: | Jian, Xianzhong, Li, Wenlong, Guo, Xuguang, Wang, Ruzhi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339238/ https://www.ncbi.nlm.nih.gov/pubmed/30609699 http://dx.doi.org/10.3390/s19010122 |
Ejemplares similares
-
Application of Convolutional Neural Network in Motor Bearing Fault Diagnosis
por: Zhou, Shuiqin, et al.
Publicado: (2022) -
Bearing fault diagnosis based on particle swarm optimization fusion convolutional neural network
por: Liu, Xian, et al.
Publicado: (2022) -
A Deep Neural Network-Based Feature Fusion for Bearing Fault Diagnosis
por: Hoang, Duy Tang, et al.
Publicado: (2021) -
Bearing Fault Diagnosis Using Lightweight and Robust One-Dimensional Convolution Neural Network in the Frequency Domain
por: Hakim, Mohammed, et al.
Publicado: (2022) -
Application of a new one-dimensional deep convolutional neural network for intelligent fault diagnosis of rolling bearings
por: Xie, Shenglong, et al.
Publicado: (2020)