Cargando…
PIXER: an automated particle-selection method based on segmentation using a deep neural network
BACKGROUND: Cryo-electron microscopy (cryo-EM) has become a widely used tool for determining the structures of proteins and macromolecular complexes. To acquire the input for single-particle cryo-EM reconstruction, researchers must select hundreds of thousands of particles from micrographs. As the s...
Autores principales: | Zhang, Jingrong, Wang, Zihao, Chen, Yu, Han, Renmin, Liu, Zhiyong, Sun, Fei, Zhang, Fa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339297/ https://www.ncbi.nlm.nih.gov/pubmed/30658571 http://dx.doi.org/10.1186/s12859-019-2614-y |
Ejemplares similares
-
Convolutional neural network for automated mass segmentation in mammography
por: Abdelhafiz, Dina, et al.
Publicado: (2020) -
DeepCryoPicker: fully automated deep neural network for single protein particle picking in cryo-EM
por: Al-Azzawi, Adil, et al.
Publicado: (2020) -
Compressed sensing improved iterative reconstruction-reprojection algorithm for electron tomography
por: Li, Lun, et al.
Publicado: (2020) -
Identifying genomic islands with deep neural networks
por: Assaf, Rida, et al.
Publicado: (2021) -
Deep neural network based tissue deconvolution of circulating tumor cell RNA
por: Yan, Fengyao, et al.
Publicado: (2023)