Cargando…
Comparative analysis of differential gene expression analysis tools for single-cell RNA sequencing data
BACKGROUND: The analysis of single-cell RNA sequencing (scRNAseq) data plays an important role in understanding the intrinsic and extrinsic cellular processes in biological and biomedical research. One significant effort in this area is the detection of differentially expressed (DE) genes. scRNAseq...
Autores principales: | Wang, Tianyu, Li, Boyang, Nelson, Craig E., Nabavi, Sheida |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339299/ https://www.ncbi.nlm.nih.gov/pubmed/30658573 http://dx.doi.org/10.1186/s12859-019-2599-6 |
Ejemplares similares
-
Comparative analysis of differential gene expression tools for RNA sequencing time course data
por: Spies, Daniel, et al.
Publicado: (2017) -
Single-cell classification using graph convolutional networks
por: Wang, Tianyu, et al.
Publicado: (2021) -
An evaluation of copy number variation detection tools for cancer using whole exome sequencing data
por: Zare, Fatima, et al.
Publicado: (2017) -
Influence of single-cell RNA sequencing data integration on the performance of differential gene expression analysis
por: Kujawa, Tomasz, et al.
Publicado: (2022) -
Comparative analysis of common alignment tools for single-cell RNA sequencing
por: Brüning, Ralf Schulze, et al.
Publicado: (2022)