Cargando…
Cheap and rapid in-house method for direct identification of positive blood cultures by MALDI-TOF MS technology
BACKGROUND: Rapid and accurate pathogen identification in blood cultures is very important for septic patients and has major consequences on morbidity and mortality rates. In recent years, matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS)-based technology ha...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339441/ https://www.ncbi.nlm.nih.gov/pubmed/30658585 http://dx.doi.org/10.1186/s12879-019-3709-9 |
Sumario: | BACKGROUND: Rapid and accurate pathogen identification in blood cultures is very important for septic patients and has major consequences on morbidity and mortality rates. In recent years, matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS)-based technology has become useful for highly specific and sensitive identification of bacteria and yeasts from clinical samples including sterile body fluids. Additional in-house methods enabled direct identification from blood cultures following various preparation protocols. METHODS: Blood culture (5 ml) was harvested from each positive bottle following growth identification by BACTEC™ FX system and transferred into a VACUETTE® Z Serum Sep Clot Activator tube containing an inert gel, which following centrifugation separates microorganisms from the blood cells. We used MALDI-TOF MS analysis for identification of microorganisms collected from the gel surface. RESULTS: Positive blood culture bottles (186) were collected. In comparison with the routine method, 99% (184/186) and 90% (168/186) of the isolates were correctly identified by the SepsiTyper kit and the in-house method, respectively. We found high concordance (Pearson coefficient = 0.7, p < 0.0001) between our in-house method and the SepsiTyper kit. Additionally, high correlation was found in sub-groups of identified bacteria, with Pearson coefficients of 0.77 (p < 0.0001), 0.67 (p < 0.0001), and 0.73 (p < 0.007) for Gram negative, Gram positive, and anaerobic bacteria, respectively. CONCLUSIONS: Our in-house method was found to be in good agreement with the SepsiTyper kit. Considering the low costs and the rapid and easy implementation of this procedure, we propose our in-house method for the direct identification of bacteria from blood cultures. |
---|