Cargando…
Structural basis of 7SK RNA 5′ γ-phosphate methylation and retention by MePCE
Among RNA 5′-cap structures, γ-phosphate monomethylation is unique to a small subset of noncoding RNAs, 7SK and U6 in humans. 7SK is capped by methylphosphate capping enzyme (MePCE), which has a second non-enzymatic role as a core component of the 7SK RNP that is an essential regulator of RNA transc...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339579/ https://www.ncbi.nlm.nih.gov/pubmed/30559425 http://dx.doi.org/10.1038/s41589-018-0188-z |
Sumario: | Among RNA 5′-cap structures, γ-phosphate monomethylation is unique to a small subset of noncoding RNAs, 7SK and U6 in humans. 7SK is capped by methylphosphate capping enzyme (MePCE), which has a second non-enzymatic role as a core component of the 7SK RNP that is an essential regulator of RNA transcription. We report 2.0 and 2.1 Å X-ray crystal structures of human MePCE methyltransferase domain bound to S-adenosylhomocysteine (SAH) and uncapped or capped 7SK substrates, respectively. 7SK recognition is achieved by protein contacts to a 5′ hairpin-single-stranded RNA region, explaining MePCE specificity for 7SK and U6. The structures reveal SAH and product RNA in a near-transition state geometry. Surprisingly, binding experiments show that MePCE has higher affinity for capped vs uncapped 7SK, with kinetic data supporting a slow product release model. This work reveals the molecular mechanism of methyl transfer and 7SK retention by MePCE for subsequent assembly of 7SK RNP. |
---|