Cargando…

Visualizing the Distribution of Matrix Metalloproteinases in Ischemic Brain Using In Vivo (19)F-Magnetic Resonance Spectroscopic Imaging

Matrix metalloproteinases (MMPs) damage the neurovascular unit, promote the blood-brain barrier (BBB) disruption following ischemic stroke, and play essential roles in hemorrhagic transformation (HT), which is one of the most severe side effects of thrombolytic therapy. However, no biomarkers have p...

Descripción completa

Detalles Bibliográficos
Autores principales: Huber, Vincent J., Igarashi, Hironaka, Ueki, Satoshi, Terumitsu-Tsujita, Mika, Nito, Chikako, Ohno, Ken, Suzuki, Yuji, Itoh, Kosuke, Kwee, Ingrid L., Nakada, Tsutomu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339703/
https://www.ncbi.nlm.nih.gov/pubmed/30723388
http://dx.doi.org/10.1155/2019/8908943
Descripción
Sumario:Matrix metalloproteinases (MMPs) damage the neurovascular unit, promote the blood-brain barrier (BBB) disruption following ischemic stroke, and play essential roles in hemorrhagic transformation (HT), which is one of the most severe side effects of thrombolytic therapy. However, no biomarkers have presently been identified that can be used to track changes in the distribution of MMPs in the brain. Here, we developed a new (19)F-molecular ligand, TGF-019, for visualizing the distribution of MMPs in vivo using (19)F-magnetic resonance spectroscopic imaging ((19)F-MRSI). We demonstrated TGF-019 has sufficient sensitivity for the specific MMPs suspected in evoking HT during ischemic stroke, i.e., MMP2, MMP9, and MMP3. We then utilized it to assess those MMPs at 22 to 24 hours after experimental focal cerebral ischemia on MMP2-null mice, as well as wild-type mice with and without the systemic administration of the recombinant tissue plasminogen activator (rt-PA). The (19)F-MRSI of TGN-019-administered mice showed high signal intensity within ischemic lesions that correlated with total MMP2 and MMP9 activity, which was confirmed by zymographic analysis of ischemic tissues. Based on the results of this study, (19)F-MRSI following TGN-019 administration can be used to assess potential therapeutic strategies for ischemic stroke.