Cargando…
Mathematical Modeling for Pharmaco-Kinetic and -Dynamic Predictions from Controlled Drug Release NanoSystems: A Comparative Parametric Study
Predicting pharmacokinetics, based on the theory of dynamic systems, for an administered drug (whether intravenously, orally, intramuscularly, etc.), is an industrial and clinical challenge. Often, mathematical modeling of pharmacokinetics is preformed using only a measured concentration time profil...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339717/ https://www.ncbi.nlm.nih.gov/pubmed/30723572 http://dx.doi.org/10.1155/2019/9153876 |
Sumario: | Predicting pharmacokinetics, based on the theory of dynamic systems, for an administered drug (whether intravenously, orally, intramuscularly, etc.), is an industrial and clinical challenge. Often, mathematical modeling of pharmacokinetics is preformed using only a measured concentration time profile of a drug administered in plasma and/or in blood. Yet, in dynamic systems, mathematical modeling (linear) uses both a mathematically described drug administration and a mathematically described body response to the administered drug. In the present work, we compare several mathematical models well known in the literature for simulating controlled drug release kinetics using available experimental data sets obtained in real systems with different drugs and nanosized carriers. We employed the χ(2) minimization method and concluded that the Korsmeyer–Peppas model (or power-law model) provides the best fit, in all cases (the minimum value of χ(2) per degree of freedom; χ(min)(2)/d.o.f. = 1.4183, with 2 free parameters or m = 2). Hence, (i) better understanding of the exact mass transport mechanisms involved in drugs release and (ii) quantitative prediction of drugs release can be computed and simulated. We anticipate that this work will help devise optimal pharmacokinetic and dynamic release systems, with measured variable properties, at nanoscale, characterized to target specific diseases and conditions. |
---|