Cargando…
Ranking Cancer Proteins by Integrating PPI Network and Protein Expression Profiles
Proteomics, the large-scale analysis of proteins, is contributing greatly to understanding gene function in the postgenomic era. However, disease protein ranking using shotgun proteomics data has not been fully evaluated. In this study, we prioritized disease-related proteins by integrating the prot...
Autores principales: | Ren, Jie, Shang, Lulu, Wang, Qing, Li, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6339728/ https://www.ncbi.nlm.nih.gov/pubmed/30723737 http://dx.doi.org/10.1155/2019/3907195 |
Ejemplares similares
-
GroupRank: Rank Candidate Genes in PPI Network by Differentially Expressed Gene Groups
por: Wang, Qing, et al.
Publicado: (2014) -
Predicting essential proteins by integrating orthology, gene expressions, and PPI networks
por: Zhang, Xue, et al.
Publicado: (2018) -
Identifying Dynamic Protein Complexes Based on Gene Expression Profiles and PPI Networks
por: Li, Min, et al.
Publicado: (2014) -
Towards the identification of protein complexes and functional modules by integrating PPI network and gene expression data
por: Li, Min, et al.
Publicado: (2012) -
Integrating PPI datasets with the PPI data from biomedical literature for protein complex detection
por: Yang, Zhi Hao, et al.
Publicado: (2014)