Cargando…
Towards FAIRer Biological Knowledge Networks Using a Hybrid Linked Data and Graph Database Approach
The speed and accuracy of new scientific discoveries – be it by humans or artificial intelligence – depends on the quality of the underlying data and on the technology to connect, search and share the data efficiently. In recent years, we have seen the rise of graph databases and semi-formal data mo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
De Gruyter
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6340125/ https://www.ncbi.nlm.nih.gov/pubmed/30085931 http://dx.doi.org/10.1515/jib-2018-0023 |
_version_ | 1783388743275642880 |
---|---|
author | Brandizi, Marco Singh, Ajit Rawlings, Christopher Hassani-Pak, Keywan |
author_facet | Brandizi, Marco Singh, Ajit Rawlings, Christopher Hassani-Pak, Keywan |
author_sort | Brandizi, Marco |
collection | PubMed |
description | The speed and accuracy of new scientific discoveries – be it by humans or artificial intelligence – depends on the quality of the underlying data and on the technology to connect, search and share the data efficiently. In recent years, we have seen the rise of graph databases and semi-formal data models such as knowledge graphs to facilitate software approaches to scientific discovery. These approaches extend work based on formalised models, such as the Semantic Web. In this paper, we present our developments to connect, search and share data about genome-scale knowledge networks (GSKN). We have developed a simple application ontology based on OWL/RDF with mappings to standard schemas. We are employing the ontology to power data access services like resolvable URIs, SPARQL endpoints, JSON-LD web APIs and Neo4j-based knowledge graphs. We demonstrate how the proposed ontology and graph databases considerably improve search and access to interoperable and reusable biological knowledge (i.e. the FAIRness data principles). |
format | Online Article Text |
id | pubmed-6340125 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | De Gruyter |
record_format | MEDLINE/PubMed |
spelling | pubmed-63401252019-01-28 Towards FAIRer Biological Knowledge Networks Using a Hybrid Linked Data and Graph Database Approach Brandizi, Marco Singh, Ajit Rawlings, Christopher Hassani-Pak, Keywan J Integr Bioinform Workshop The speed and accuracy of new scientific discoveries – be it by humans or artificial intelligence – depends on the quality of the underlying data and on the technology to connect, search and share the data efficiently. In recent years, we have seen the rise of graph databases and semi-formal data models such as knowledge graphs to facilitate software approaches to scientific discovery. These approaches extend work based on formalised models, such as the Semantic Web. In this paper, we present our developments to connect, search and share data about genome-scale knowledge networks (GSKN). We have developed a simple application ontology based on OWL/RDF with mappings to standard schemas. We are employing the ontology to power data access services like resolvable URIs, SPARQL endpoints, JSON-LD web APIs and Neo4j-based knowledge graphs. We demonstrate how the proposed ontology and graph databases considerably improve search and access to interoperable and reusable biological knowledge (i.e. the FAIRness data principles). De Gruyter 2018-08-07 /pmc/articles/PMC6340125/ /pubmed/30085931 http://dx.doi.org/10.1515/jib-2018-0023 Text en ©2018, Marco Brandizi et al., published by De Gruyter, Berlin/Boston http://creativecommons.org/licenses/by-nc-nd/4.0 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. |
spellingShingle | Workshop Brandizi, Marco Singh, Ajit Rawlings, Christopher Hassani-Pak, Keywan Towards FAIRer Biological Knowledge Networks Using a Hybrid Linked Data and Graph Database Approach |
title | Towards FAIRer Biological Knowledge Networks Using a Hybrid Linked Data and Graph Database Approach |
title_full | Towards FAIRer Biological Knowledge Networks Using a Hybrid Linked Data and Graph Database Approach |
title_fullStr | Towards FAIRer Biological Knowledge Networks Using a Hybrid Linked Data and Graph Database Approach |
title_full_unstemmed | Towards FAIRer Biological Knowledge Networks Using a Hybrid Linked Data and Graph Database Approach |
title_short | Towards FAIRer Biological Knowledge Networks Using a Hybrid Linked Data and Graph Database Approach |
title_sort | towards fairer biological knowledge networks using a hybrid linked data and graph database approach |
topic | Workshop |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6340125/ https://www.ncbi.nlm.nih.gov/pubmed/30085931 http://dx.doi.org/10.1515/jib-2018-0023 |
work_keys_str_mv | AT brandizimarco towardsfairerbiologicalknowledgenetworksusingahybridlinkeddataandgraphdatabaseapproach AT singhajit towardsfairerbiologicalknowledgenetworksusingahybridlinkeddataandgraphdatabaseapproach AT rawlingschristopher towardsfairerbiologicalknowledgenetworksusingahybridlinkeddataandgraphdatabaseapproach AT hassanipakkeywan towardsfairerbiologicalknowledgenetworksusingahybridlinkeddataandgraphdatabaseapproach |