Cargando…
Estimation of Dynamic Canopy Variables Using Hyperspectral Derived Vegetation Indices Under Varying N Rates at Diverse Phenological Stages of Rice
Non-destructive and rapid estimation of canopy variables is imperative for predicting crop growth and managing nitrogen (N) application. Hyperspectral remote sensing can be used for timely and accurate estimation of canopy physical and chemical properties; however, discrepancies associated with soil...
Autores principales: | Din, Mairaj, Ming, Jin, Hussain, Sadeed, Ata-Ul-Karim, Syed Tahir, Rashid, Muhammad, Tahir, Muhammad Naveed, Hua, Shizhi, Wang, Shanqin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6340937/ https://www.ncbi.nlm.nih.gov/pubmed/30697219 http://dx.doi.org/10.3389/fpls.2018.01883 |
Ejemplares similares
-
Evaluating Hyperspectral Vegetation Indices for Leaf Area Index Estimation of Oryza sativa L. at Diverse Phenological Stages
por: Din, Mairaj, et al.
Publicado: (2017) -
Inversion modeling of japonica rice canopy chlorophyll content with UAV hyperspectral remote sensing
por: Cao, Yingli, et al.
Publicado: (2020) -
Exploring the Impacts of Genotype-Management-Environment Interactions on Wheat Productivity, Water Use Efficiency, and Nitrogen Use Efficiency under Rainfed Conditions
por: Osman, Raheel, et al.
Publicado: (2021) -
Assessment of F(v)/F(m) absorbed by wheat canopies employing in-situ hyperspectral vegetation indexes
por: Tan, Chang-Wei, et al.
Publicado: (2018) -
Remotely Assessing Fraction of Photosynthetically Active Radiation (FPAR) for Wheat Canopies Based on Hyperspectral Vegetation Indexes
por: Tan, Changwei, et al.
Publicado: (2018)