Cargando…

Control of structural flexibility of layered-pillared metal-organic frameworks anchored at surfaces

Flexible metal-organic frameworks (MOFs) are structurally flexible, porous, crystalline solids that show a structural transition in response to a stimulus. If MOF-based solid-state and microelectronic devices are to be capable of leveraging such structural flexibility, then the integration of MOF th...

Descripción completa

Detalles Bibliográficos
Autores principales: Wannapaiboon, Suttipong, Schneemann, Andreas, Hante, Inke, Tu, Min, Epp, Konstantin, Semrau, Anna Lisa, Sternemann, Christian, Paulus, Michael, Baxter, Samuel J., Kieslich, Gregor, Fischer, Roland A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6341086/
https://www.ncbi.nlm.nih.gov/pubmed/30664645
http://dx.doi.org/10.1038/s41467-018-08285-5
_version_ 1783388891462500352
author Wannapaiboon, Suttipong
Schneemann, Andreas
Hante, Inke
Tu, Min
Epp, Konstantin
Semrau, Anna Lisa
Sternemann, Christian
Paulus, Michael
Baxter, Samuel J.
Kieslich, Gregor
Fischer, Roland A.
author_facet Wannapaiboon, Suttipong
Schneemann, Andreas
Hante, Inke
Tu, Min
Epp, Konstantin
Semrau, Anna Lisa
Sternemann, Christian
Paulus, Michael
Baxter, Samuel J.
Kieslich, Gregor
Fischer, Roland A.
author_sort Wannapaiboon, Suttipong
collection PubMed
description Flexible metal-organic frameworks (MOFs) are structurally flexible, porous, crystalline solids that show a structural transition in response to a stimulus. If MOF-based solid-state and microelectronic devices are to be capable of leveraging such structural flexibility, then the integration of MOF thin films into a device configuration is crucial. Here we report the targeted and precise anchoring of Cu-based alkylether-functionalised layered-pillared MOF crystallites onto substrates via stepwise liquid-phase epitaxy. The structural transformation during methanol sorption is monitored by in-situ grazing incidence X-ray diffraction. Interestingly, spatially-controlled anchoring of the flexible MOFs on the surface induces a distinct structural responsiveness which is different from the bulk powder and can be systematically controlled by varying the crystallite characteristics, for instance dimensions and orientation. This fundamental understanding of thin-film flexibility is of paramount importance for the rational design of MOF-based devices utilising the structural flexibility in specific applications such as selective sensors.
format Online
Article
Text
id pubmed-6341086
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-63410862019-01-23 Control of structural flexibility of layered-pillared metal-organic frameworks anchored at surfaces Wannapaiboon, Suttipong Schneemann, Andreas Hante, Inke Tu, Min Epp, Konstantin Semrau, Anna Lisa Sternemann, Christian Paulus, Michael Baxter, Samuel J. Kieslich, Gregor Fischer, Roland A. Nat Commun Article Flexible metal-organic frameworks (MOFs) are structurally flexible, porous, crystalline solids that show a structural transition in response to a stimulus. If MOF-based solid-state and microelectronic devices are to be capable of leveraging such structural flexibility, then the integration of MOF thin films into a device configuration is crucial. Here we report the targeted and precise anchoring of Cu-based alkylether-functionalised layered-pillared MOF crystallites onto substrates via stepwise liquid-phase epitaxy. The structural transformation during methanol sorption is monitored by in-situ grazing incidence X-ray diffraction. Interestingly, spatially-controlled anchoring of the flexible MOFs on the surface induces a distinct structural responsiveness which is different from the bulk powder and can be systematically controlled by varying the crystallite characteristics, for instance dimensions and orientation. This fundamental understanding of thin-film flexibility is of paramount importance for the rational design of MOF-based devices utilising the structural flexibility in specific applications such as selective sensors. Nature Publishing Group UK 2019-01-21 /pmc/articles/PMC6341086/ /pubmed/30664645 http://dx.doi.org/10.1038/s41467-018-08285-5 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Wannapaiboon, Suttipong
Schneemann, Andreas
Hante, Inke
Tu, Min
Epp, Konstantin
Semrau, Anna Lisa
Sternemann, Christian
Paulus, Michael
Baxter, Samuel J.
Kieslich, Gregor
Fischer, Roland A.
Control of structural flexibility of layered-pillared metal-organic frameworks anchored at surfaces
title Control of structural flexibility of layered-pillared metal-organic frameworks anchored at surfaces
title_full Control of structural flexibility of layered-pillared metal-organic frameworks anchored at surfaces
title_fullStr Control of structural flexibility of layered-pillared metal-organic frameworks anchored at surfaces
title_full_unstemmed Control of structural flexibility of layered-pillared metal-organic frameworks anchored at surfaces
title_short Control of structural flexibility of layered-pillared metal-organic frameworks anchored at surfaces
title_sort control of structural flexibility of layered-pillared metal-organic frameworks anchored at surfaces
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6341086/
https://www.ncbi.nlm.nih.gov/pubmed/30664645
http://dx.doi.org/10.1038/s41467-018-08285-5
work_keys_str_mv AT wannapaiboonsuttipong controlofstructuralflexibilityoflayeredpillaredmetalorganicframeworksanchoredatsurfaces
AT schneemannandreas controlofstructuralflexibilityoflayeredpillaredmetalorganicframeworksanchoredatsurfaces
AT hanteinke controlofstructuralflexibilityoflayeredpillaredmetalorganicframeworksanchoredatsurfaces
AT tumin controlofstructuralflexibilityoflayeredpillaredmetalorganicframeworksanchoredatsurfaces
AT eppkonstantin controlofstructuralflexibilityoflayeredpillaredmetalorganicframeworksanchoredatsurfaces
AT semrauannalisa controlofstructuralflexibilityoflayeredpillaredmetalorganicframeworksanchoredatsurfaces
AT sternemannchristian controlofstructuralflexibilityoflayeredpillaredmetalorganicframeworksanchoredatsurfaces
AT paulusmichael controlofstructuralflexibilityoflayeredpillaredmetalorganicframeworksanchoredatsurfaces
AT baxtersamuelj controlofstructuralflexibilityoflayeredpillaredmetalorganicframeworksanchoredatsurfaces
AT kieslichgregor controlofstructuralflexibilityoflayeredpillaredmetalorganicframeworksanchoredatsurfaces
AT fischerrolanda controlofstructuralflexibilityoflayeredpillaredmetalorganicframeworksanchoredatsurfaces