Cargando…
Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future
Understanding the potential drought impacts on agricultural production is critical for ensuring global food security. Instead of providing a deterministic estimate, this study investigates the likelihood of yield loss of wheat, maize, rice and soybeans in response to droughts of various intensities...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6341212/ https://www.ncbi.nlm.nih.gov/pubmed/30448671 http://dx.doi.org/10.1016/j.scitotenv.2018.10.434 |
_version_ | 1783388916928217088 |
---|---|
author | Leng, Guoyong Hall, Jim |
author_facet | Leng, Guoyong Hall, Jim |
author_sort | Leng, Guoyong |
collection | PubMed |
description | Understanding the potential drought impacts on agricultural production is critical for ensuring global food security. Instead of providing a deterministic estimate, this study investigates the likelihood of yield loss of wheat, maize, rice and soybeans in response to droughts of various intensities in the 10 largest producing countries. We use crop-country specific standardized precipitation index (SPI) and census yield data for 1961–2016 to build a probabilistic modeling framework for estimating yield loss risk under a moderate (−1.2 < SPI < −0.8), severe (−1.5 < SPI < −1.3), extreme (−1.9 < SPI < −1.6) and exceptional (SPI < −2.0) drought. Results show that there is >80% probability that wheat production will fall below its long-term average when experiencing an exceptional drought, especially in USA and Canada. As for maize, India shows the highest risk of yield reduction under droughts, while rice is the crop that is most vulnerable to droughts in Vietnam and Thailand. Risk of drought-driven soybean yield loss is the highest in USA, Russian and India. Yield loss risk tends to grow faster when experiencing a shift in drought severity from moderate to severe than that from extreme to the exceptional category, demonstrating the non-linear response of yield to the increase in drought severity. Sensitivity analysis shows that temperature plays an important role in determining drought impacts, through reducing or amplifying drought-driven yield loss risk. Compared to present conditions, an ensemble of 11 crop models simulated an increase in yield loss risk by 9%–12%, 5.6%–6.3%, 18.1%–19.4% and 15.1%–16.1 for wheat, maize, rice and soybeans by the end of 21st century, respectively, without considering the benefits of CO(2) fertilization and adaptations. This study highlights the non-linear response of yield loss risk to the increase in drought severity. This implies that adaptations should be more targeted, considering not only the crop type and region but also the specific drought severity of interest. |
format | Online Article Text |
id | pubmed-6341212 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-63412122019-03-01 Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future Leng, Guoyong Hall, Jim Sci Total Environ Article Understanding the potential drought impacts on agricultural production is critical for ensuring global food security. Instead of providing a deterministic estimate, this study investigates the likelihood of yield loss of wheat, maize, rice and soybeans in response to droughts of various intensities in the 10 largest producing countries. We use crop-country specific standardized precipitation index (SPI) and census yield data for 1961–2016 to build a probabilistic modeling framework for estimating yield loss risk under a moderate (−1.2 < SPI < −0.8), severe (−1.5 < SPI < −1.3), extreme (−1.9 < SPI < −1.6) and exceptional (SPI < −2.0) drought. Results show that there is >80% probability that wheat production will fall below its long-term average when experiencing an exceptional drought, especially in USA and Canada. As for maize, India shows the highest risk of yield reduction under droughts, while rice is the crop that is most vulnerable to droughts in Vietnam and Thailand. Risk of drought-driven soybean yield loss is the highest in USA, Russian and India. Yield loss risk tends to grow faster when experiencing a shift in drought severity from moderate to severe than that from extreme to the exceptional category, demonstrating the non-linear response of yield to the increase in drought severity. Sensitivity analysis shows that temperature plays an important role in determining drought impacts, through reducing or amplifying drought-driven yield loss risk. Compared to present conditions, an ensemble of 11 crop models simulated an increase in yield loss risk by 9%–12%, 5.6%–6.3%, 18.1%–19.4% and 15.1%–16.1 for wheat, maize, rice and soybeans by the end of 21st century, respectively, without considering the benefits of CO(2) fertilization and adaptations. This study highlights the non-linear response of yield loss risk to the increase in drought severity. This implies that adaptations should be more targeted, considering not only the crop type and region but also the specific drought severity of interest. Elsevier 2019-03-01 /pmc/articles/PMC6341212/ /pubmed/30448671 http://dx.doi.org/10.1016/j.scitotenv.2018.10.434 Text en © 2018 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Leng, Guoyong Hall, Jim Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future |
title | Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future |
title_full | Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future |
title_fullStr | Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future |
title_full_unstemmed | Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future |
title_short | Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future |
title_sort | crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6341212/ https://www.ncbi.nlm.nih.gov/pubmed/30448671 http://dx.doi.org/10.1016/j.scitotenv.2018.10.434 |
work_keys_str_mv | AT lengguoyong cropyieldsensitivityofglobalmajoragriculturalcountriestodroughtsandtheprojectedchangesinthefuture AT halljim cropyieldsensitivityofglobalmajoragriculturalcountriestodroughtsandtheprojectedchangesinthefuture |