Cargando…

Lung Cancer Detection Using Image Segmentation by means of Various Evolutionary Algorithms

The objective of this paper is to explore an expedient image segmentation algorithm for medical images to curtail the physicians' interpretation of computer tomography (CT) scan images. Modern medical imaging modalities generate large images that are extremely grim to analyze manually. The cons...

Descripción completa

Detalles Bibliográficos
Autores principales: Senthil Kumar, K., Venkatalakshmi, K., Karthikeyan, K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6341460/
https://www.ncbi.nlm.nih.gov/pubmed/30728852
http://dx.doi.org/10.1155/2019/4909846
Descripción
Sumario:The objective of this paper is to explore an expedient image segmentation algorithm for medical images to curtail the physicians' interpretation of computer tomography (CT) scan images. Modern medical imaging modalities generate large images that are extremely grim to analyze manually. The consequences of segmentation algorithms rely on the exactitude and convergence time. At this moment, there is a compelling necessity to explore and implement new evolutionary algorithms to solve the problems associated with medical image segmentation. Lung cancer is the frequently diagnosed cancer across the world among men. Early detection of lung cancer navigates towards apposite treatment to save human lives. CT is one of the modest medical imaging methods to diagnose the lung cancer. In the present study, the performance of five optimization algorithms, namely, k-means clustering, k-median clustering, particle swarm optimization, inertia-weighted particle swarm optimization, and guaranteed convergence particle swarm optimization (GCPSO), to extract the tumor from the lung image has been implemented and analyzed. The performance of median, adaptive median, and average filters in the preprocessing stage was compared, and it was proved that the adaptive median filter is most suitable for medical CT images. Furthermore, the image contrast is enhanced by using adaptive histogram equalization. The preprocessed image with improved quality is subject to four algorithms. The practical results are verified for 20 sample images of the lung using MATLAB, and it was observed that the GCPSO has the highest accuracy of 95.89%.