Cargando…

Can action observation modulate balance performance in healthy subjects?

BACKGROUND: Action observation activates brain motor networks and, if followed by action imitation, it facilitates motor learning and functional recovery in patients with both neurological and musculoskeletal disorders. To date, few studies suggested that action observation plus imitation can improv...

Descripción completa

Detalles Bibliográficos
Autores principales: Gatti, Roberto, Sarasso, Elisabetta, Pelachin, Mattia, Agosta, Federica, Filippi, Massimo, Tettamanti, Andrea
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6341526/
https://www.ncbi.nlm.nih.gov/pubmed/30693101
http://dx.doi.org/10.1186/s40945-018-0053-0
Descripción
Sumario:BACKGROUND: Action observation activates brain motor networks and, if followed by action imitation, it facilitates motor learning and functional recovery in patients with both neurological and musculoskeletal disorders. To date, few studies suggested that action observation plus imitation can improve balance skills; however, it is still unclear whether the simple repetitive observation of challenging balance tasks is enough to modify postural control. Thus, the primary aim of this study was to investigate whether repetitive action observation of balance exercises without imitation has the potential to improve balance performance; the secondary aim was to estimate the different training effects of action observation, action observation plus imitation and balance training relative to a control condition in healthy subjects. METHODS: Seventy-nine healthy young adults were randomly assigned to 4 groups: action observation, action observation plus imitation, balance training and control. The first three groups were trained for about 30 minutes every day for three weeks, whereas the control group received no training. Center of pressure path length and sway area were evaluated on a force platform at baseline and after training using posturographic tests with eyes open and closed. RESULTS: As expected, both action observation plus imitation and balance training groups compared to the control group showed balance improvements, with a medium to large effect size performing balance tasks with eyes open. Action observation without imitation group showed a balance improvement with eyes open, but without a significant difference relative to the control group. CONCLUSIONS: Both action observation plus imitation and balance training have similar effects in improving postural control in healthy young subjects. Future studies on patients with postural instability are necessary to clarify whether AOT can induce longer lasting effects. Action observation alone showed a trend toward improving postural control in healthy subjects, suggesting the possibility to study its effects in temporarily immobilized diseased subjects.