Cargando…

Effects and possible mechanism of a picosecond pulsed electric field on angiogenesis in cervical cancer in vitro

Picosecond pulsed electric field (psPEF) is an athermal, minimally invasive and local ablative biomedical engineering technique used in cancer therapy. However, to the best of our knowledge, the effect of psPEF on angiogenesis in cervical cancer is unknown. Therefore, the aim of the current study wa...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Limei, Wu, Yutong, Xiong, Zhengai, Yao, Chenguo, Zeng, Manman, Zhang, Ruizhe, Hua, Yuanyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6341837/
https://www.ncbi.nlm.nih.gov/pubmed/30675207
http://dx.doi.org/10.3892/ol.2018.9782
Descripción
Sumario:Picosecond pulsed electric field (psPEF) is an athermal, minimally invasive and local ablative biomedical engineering technique used in cancer therapy. However, to the best of our knowledge, the effect of psPEF on angiogenesis in cervical cancer is unknown. Therefore, the aim of the current study was to investigate the effects and possible mechanism of psPEF on angiogenesis in cervical cancer in vitro. HeLa cell and human umbilical vein endothelial cell (HUVEC) suspensions were exposed to psPEF with an increasing gradient of electric field intensity (0, 200, 400 and 600 kV/cm). A Cell Counting kit-8 assay and flow cytometry were used to investigate the effect of psPEF on the proliferation and apoptosis of HUVECs. The invasion, migration and tube formation capabilities of HUVECs following psPEF treatment were investigated by Transwell invasion assay, scratch test and lumen formation assay, respectively. Changes in the protein and mRNA levels of angiogenesis-associated factors in HeLa cells were detected by western blot analysis and reverse transcription-quantitative polymerase chain reaction. psPEF was identified to inhibit proliferation and tube formation, and induce apoptosis and necrosis of HUVECs in a dose-dependent manner. psPEF was revealed to decrease the protein and mRNA expression levels of vascular endothelial growth factor and hypoxia-inducible factor 1α in HeLa cells. In summary, psPEF exhibited anti-angiogenic effects in cervical cancer in vitro by exerting direct effects on HUVECs and indirect effects on angiogenesis-associated factors in HeLa cells.