Cargando…
miR-7-5p inhibits cell migration and invasion in glioblastoma through targeting SATB1
MicroRNAs (miRNAs/miRs) have been revealed to influence the development and progression of glioblastoma. Although a number of miRNAs are abnormally expressed in glioblastoma it is not clear whether they are a factor associated with glioblastoma pathogenesis. In the present study, miR-7-5p was identi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6341908/ https://www.ncbi.nlm.nih.gov/pubmed/30675243 http://dx.doi.org/10.3892/ol.2018.9777 |
Sumario: | MicroRNAs (miRNAs/miRs) have been revealed to influence the development and progression of glioblastoma. Although a number of miRNAs are abnormally expressed in glioblastoma it is not clear whether they are a factor associated with glioblastoma pathogenesis. In the present study, miR-7-5p was identified as being aberrantly downregulated in glioblastoma tissues and cell lines. miR-7-5p overexpression significantly decreased the migratory and invasive capacity of the cells, while miR-7-5p silencing had the opposite effect. In addition, a luciferase assay confirmed that special AT rich sequence binding protein 1 (SATB1) was a direct target gene of miR-7-5p in glioblastoma. The overexpression of SATB1 in glioblastoma was revealed to promote cell migration and invasion. In addition, SATB1 overexpression may weaken the inhibitory effect of miR-7-5p on cell migration and invasion. miR-7-5p overexpression reversed the effects of SATB1 on cell migration and invasion in glioblastoma cells. In conclusion, miR-7-5p may be a useful therapeutic target for the diagnosis and treatment of patients with glioblastoma. |
---|