Cargando…
Single-Cell RNA-Seq of Mouse Olfactory Bulb Reveals Cellular Heterogeneity and Activity-Dependent Molecular Census of Adult-Born Neurons
Cellular heterogeneity within the mammalian brain poses a challenge toward understanding its complex functions. Within the olfactory bulb, odor information is processed by subtypes of inhibitory interneurons whose heterogeneity and functionality are influenced by ongoing adult neurogenesis. To inves...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6342206/ https://www.ncbi.nlm.nih.gov/pubmed/30517858 http://dx.doi.org/10.1016/j.celrep.2018.11.034 |
_version_ | 1783389089647558656 |
---|---|
author | Tepe, Burak Hill, Matthew C. Pekarek, Brandon T. Hunt, Patrick J. Martin, Thomas J. Martin, James F. Arenkiel, Benjamin R. |
author_facet | Tepe, Burak Hill, Matthew C. Pekarek, Brandon T. Hunt, Patrick J. Martin, Thomas J. Martin, James F. Arenkiel, Benjamin R. |
author_sort | Tepe, Burak |
collection | PubMed |
description | Cellular heterogeneity within the mammalian brain poses a challenge toward understanding its complex functions. Within the olfactory bulb, odor information is processed by subtypes of inhibitory interneurons whose heterogeneity and functionality are influenced by ongoing adult neurogenesis. To investigate this cellular heterogeneity and better understand adult-born neuron development, we utilized single-cell RNA sequencing and computational modeling to reveal diverse and transcriptionally distinct neuronal and nonneuronal cell types. We also analyzed molecular changes during adult-born interneuron maturation and uncovered developmental programs within their gene expression profiles. Finally, we identified that distinct neuronal subtypes are differentially affected by sensory experience. Together, these data provide a transcriptome-based foundation for investigating subtype-specific neuronal function in the olfactory bulb (OB), charting the molecular profiles that arise during the maturation and integration of adult-born neurons and how they dynamically change in an activity-dependent manner. |
format | Online Article Text |
id | pubmed-6342206 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
record_format | MEDLINE/PubMed |
spelling | pubmed-63422062019-01-22 Single-Cell RNA-Seq of Mouse Olfactory Bulb Reveals Cellular Heterogeneity and Activity-Dependent Molecular Census of Adult-Born Neurons Tepe, Burak Hill, Matthew C. Pekarek, Brandon T. Hunt, Patrick J. Martin, Thomas J. Martin, James F. Arenkiel, Benjamin R. Cell Rep Article Cellular heterogeneity within the mammalian brain poses a challenge toward understanding its complex functions. Within the olfactory bulb, odor information is processed by subtypes of inhibitory interneurons whose heterogeneity and functionality are influenced by ongoing adult neurogenesis. To investigate this cellular heterogeneity and better understand adult-born neuron development, we utilized single-cell RNA sequencing and computational modeling to reveal diverse and transcriptionally distinct neuronal and nonneuronal cell types. We also analyzed molecular changes during adult-born interneuron maturation and uncovered developmental programs within their gene expression profiles. Finally, we identified that distinct neuronal subtypes are differentially affected by sensory experience. Together, these data provide a transcriptome-based foundation for investigating subtype-specific neuronal function in the olfactory bulb (OB), charting the molecular profiles that arise during the maturation and integration of adult-born neurons and how they dynamically change in an activity-dependent manner. 2018-12-04 /pmc/articles/PMC6342206/ /pubmed/30517858 http://dx.doi.org/10.1016/j.celrep.2018.11.034 Text en This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tepe, Burak Hill, Matthew C. Pekarek, Brandon T. Hunt, Patrick J. Martin, Thomas J. Martin, James F. Arenkiel, Benjamin R. Single-Cell RNA-Seq of Mouse Olfactory Bulb Reveals Cellular Heterogeneity and Activity-Dependent Molecular Census of Adult-Born Neurons |
title | Single-Cell RNA-Seq of Mouse Olfactory Bulb Reveals Cellular
Heterogeneity and Activity-Dependent Molecular Census of Adult-Born
Neurons |
title_full | Single-Cell RNA-Seq of Mouse Olfactory Bulb Reveals Cellular
Heterogeneity and Activity-Dependent Molecular Census of Adult-Born
Neurons |
title_fullStr | Single-Cell RNA-Seq of Mouse Olfactory Bulb Reveals Cellular
Heterogeneity and Activity-Dependent Molecular Census of Adult-Born
Neurons |
title_full_unstemmed | Single-Cell RNA-Seq of Mouse Olfactory Bulb Reveals Cellular
Heterogeneity and Activity-Dependent Molecular Census of Adult-Born
Neurons |
title_short | Single-Cell RNA-Seq of Mouse Olfactory Bulb Reveals Cellular
Heterogeneity and Activity-Dependent Molecular Census of Adult-Born
Neurons |
title_sort | single-cell rna-seq of mouse olfactory bulb reveals cellular
heterogeneity and activity-dependent molecular census of adult-born
neurons |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6342206/ https://www.ncbi.nlm.nih.gov/pubmed/30517858 http://dx.doi.org/10.1016/j.celrep.2018.11.034 |
work_keys_str_mv | AT tepeburak singlecellrnaseqofmouseolfactorybulbrevealscellularheterogeneityandactivitydependentmolecularcensusofadultbornneurons AT hillmatthewc singlecellrnaseqofmouseolfactorybulbrevealscellularheterogeneityandactivitydependentmolecularcensusofadultbornneurons AT pekarekbrandont singlecellrnaseqofmouseolfactorybulbrevealscellularheterogeneityandactivitydependentmolecularcensusofadultbornneurons AT huntpatrickj singlecellrnaseqofmouseolfactorybulbrevealscellularheterogeneityandactivitydependentmolecularcensusofadultbornneurons AT martinthomasj singlecellrnaseqofmouseolfactorybulbrevealscellularheterogeneityandactivitydependentmolecularcensusofadultbornneurons AT martinjamesf singlecellrnaseqofmouseolfactorybulbrevealscellularheterogeneityandactivitydependentmolecularcensusofadultbornneurons AT arenkielbenjaminr singlecellrnaseqofmouseolfactorybulbrevealscellularheterogeneityandactivitydependentmolecularcensusofadultbornneurons |