Cargando…
Machine learning coarse grained models for water
An accurate and computationally efficient molecular level description of mesoscopic behavior of ice-water systems remains a major challenge. Here, we introduce a set of machine-learned coarse-grained (CG) models (ML-BOP, ML-BOP(dih), and ML-mW) that accurately describe the structure and thermodynami...
Autores principales: | Chan, Henry, Cherukara, Mathew J., Narayanan, Badri, Loeffler, Troy D., Benmore, Chris, Gray, Stephen K., Sankaranarayanan, Subramanian K. R. S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6342926/ https://www.ncbi.nlm.nih.gov/pubmed/30670699 http://dx.doi.org/10.1038/s41467-018-08222-6 |
Ejemplares similares
-
Learning in continuous action space for developing high dimensional potential energy models
por: Manna, Sukriti, et al.
Publicado: (2022) -
Machine learning coarse-grained potentials of protein thermodynamics
por: Majewski, Maciej, et al.
Publicado: (2023) -
Operando tribochemical formation of onion-like-carbon leads to macroscale superlubricity
por: Berman, Diana, et al.
Publicado: (2018) -
Machine Learning of Coarse-Grained Molecular Dynamics
Force Fields
por: Wang, Jiang, et al.
Publicado: (2019) -
Machine learning the metastable phase diagram of covalently bonded carbon
por: Srinivasan, Srilok, et al.
Publicado: (2022)